مدل‌سازی عمر خستگی اتصالات دو لبه برشی با استفاده از شبکه عصبی مصنوعی

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه تبریز

2 دانشگاه علم و صنعت

3 دانشگاه مراغه

چکیده

خستگی یکی از عوامل اصلی در واماندگی اتصالات مکانیکی و صفحات در صنایع هوافضا و صنایع اتومبیل‌سازی می‌باشد پدیده‌ی خستگی در اثر بارگذاری متغیر به زمان رخ می‌دهد. در این پژوهش نتایج تجربی عمر خستگی اتصالات دو لبه برشی آلومینیم 3T -2024 Al در بارهای مختلف از تست خستگی به دست آمده و نتایج حاصل برای مدل‌سازی با شبکه عصبی مصنوعی استفاده شده است. شبکه‌های عصبی مصنوعی با پردازش داده‌های تجربی، دانش یا قانون نهفته در ورای داده‌ها را به ساختار شبکه منتقل می‌کنند و بر خلاف مدل‌های ریاضی نیازی به تعیین رابطه ریاضی بین ورودی‌ها و خروجی‌ها ندارند. به منظور مدل سازی شبکه عصبی مصنوعی ابتدا بطور کاملا تصادفی یکی از داده‌های تجربی مربوط به عمر خستگی برای اعتبارسنجی و دو داده دیگر برای تست انتخاب شدند و از بقیه داده‌ها برای یافتن مقادیر بهینه وزن‌ها و بایاس‌ها استفاده شده است. پس از اطمینان از دقت مدل بدست آمده از آن در فاز کاری برای پیش‌بینی عمر خستگی در بارهای مختلف که قبلا تست نشده‌اند به کار گرفته شده است. از مقایسه نتایج تجربی و نتایج حاصل از مدل ایجاد شده مشاهده می‌شود که می‌توان از شبکه عصبی مصنوعی 3 لایه با خطای کمتر از 10 درصد برای یافتن عمر خستگی نمونه تحت بارهای مختلف استفاده کرد

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of fatigue life in double shear lap joints using artificial neural networks

نویسندگان [English]

  • Hadi Taghizadeh 1
  • Tajbakh Navid Chakherlou 1
  • Adel Alizadeh 2
  • Aydin Sheykh Abdollahzadeh Mamaghani 3
1
2
3
چکیده [English]

Fatigue is one of the most important failure sources of material that is caused by repeatedly applied loads. It is a progressive and localized structural damage that occurs when a material is subjected to cyclic loading. The experimental results of fatigue tests on Al-alloy 2024-T3 in double shear lap joints were used to estimate (model) fatigue life with artificial neural networks (ANN). Artificial neural networks with experimental data processing can find the knowledge or law lies behind the data, and unlike mathematical models, it’s not necessary to determine the mathematical relation between inputs and outputs. To model by artificial neural network, one of the experimental data of fatigue life randomly selected for validation and two other were selected for testing, the rest of the data were used to find the optimal values of weights and bias. After being ensured of the model accuracy, it was used to predict the fatigue life at different loads in the working phase that had not been tested. Comparison of experimental results and the results of the model shows that a 3-layer artificial neural network with less than 10% error could be used to predict the fatigue life at different loads.

کلیدواژه‌ها [English]

  • Fatigue
  • Damage
  • Double shear lap joint
  • Artificial Neural Networks
 
[1] Chakherlou T.N., Taghizadeh H., Mirzajanzadeh M., Aghdam A.B. (2012) “On the prediction of fatigue life in double shear lap joints including interference fitted pin”. Engineering Fracture Mechanic, Vol. 96, No. 3, pp. 340-354.
[2] Socie D.F., Morrow J., Chen W.C. (1979) “A procedure for estimating the total fatigue life of notched and cracked members”. Engineering Fracture Mechanic, Vol. 11, pp. 851-9.
[3] Fatemi A., Socie D.F. (1988) A critical plane approach to multiaxial fatigue damage including out of phase loading”. Fatigue Fracture Engineering Material Structure, Vol. 11, pp. 149-65.
[4] Smith K.N., Watson P., Topper T.H. (1963) “A stress strain function for the fatigue of metals”. Journal Engineering Material Technology, Vol. 5, No. 4, pp. 528-35.
[5] Glinka G., Shen G., Plumtree A. (1995) “A multiaxial fatigue strain energy density parameter related to the critical plane”. Fatigue Fracture Engineering Material Structure, Vol. 18, pp. 37-46.
 [6] Paris P., Erdogan F. (1963) “A critical analysis of crack propagation laws”. Journal of Basic Engineering, Vol. 85, No. 4, pp. 528-35.
[7] Taghizadeh H., Chakherlou T.N., Ghorbani H., Mohammadpour A. (2015) “Prediction of fatigue life in cold expanded fastener holes subjected to bolt tightening in Al alloy 7075-T6 plate”. International Journal of Mechanical Sciences, Vol. 90, pp. 6-15.
[8]  Harter A. (1999) “Comparison of contemporary FCG life prediction tools”. International Journal of Fatigue, Vol. 21, pp. 181–5.
[9] Toktas I., Özdemir A.T. (2011) “Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests”. Expert Systems with Applications, Vol. 38, pp. 553-63.
[10] Genel K. (2004) “Artificial neural networks solution to display residual hoop stress field encircling a split-sleeve cold expanded aircraft fastener hole”. International Journal of Fatigue, Vol. 26, pp. 1027-35.
[11] Mohanty J.R., Verma B.B., Parhi D.R.K., Ray P.K. (2009) “Application of artificial neural network for predicting fatigue crack propagation life of aluminum alloys”. AECHIVES of Computational Materials Science and Surface Engineering, Vol. 1, , No. 3,  pp. 133-38.
[12] Toktash I., Özdemir A.T. (2012) “Artificial neural networks solution to display residual hoop stress field encirclinga split-sleeve cold expanded aircraft fastener hole”. Expert Systems with Applications, Vol. 38, pp. 553-63
[13] Pleune T., Chopra K. (2000) “Using artificial neural networks to predict the fatigue life of carbon and low-alloy steels”. Nuclear Engineering and Design, Vol. 197, pp. 1-12.
 [14] Martin T., Hagan N., DEMUTH B. (2000) “Neural Network Design, Mark Beale MHB”. Inc. PWS Publishing Company.
[15] Rosenblatt F. (1961)” Principles of Neurodynamics”. Spartan Press, Washington D.C.
[16] Jiasheng Wu., Guoqiang Z., Quan Z., Jin Z. (2011) “Artificial neural network analysis of the performance characteristics of a reversibly used cooling tower under cross flow conditions for heat pump heating system in winter” Energy Buildings, Vol. 43, pp. 1685-1693.
[17] Hosoz M., Ertunc H.M., Bulgurcu H. (2007) “Performance prediction of a cooling tower using artificial neural network”. Energy Conversion and Management, Vol. 48, pp. 1349-1359.
[18] Vogl T.P., Mangis J.K., Rigler A.K., Zink W.T., Alkon D.L. (1988) “Accelerating the convergence of the back propagation method”. Biological Cybernetics, Vol. 59, pp. 257-263.