بررسی پارامتری ظرفیت جانبی و محاسبه ضریب رفتار لرزه‌ای قاب‌های فولادی سرد نورد شده با مهاربند تسمه قطری

نوع مقاله: پژوهشی

نویسندگان

دانشگاه اصفهان

چکیده

در این مطالعه به بررسی ظرفیت جانبی و ضریب رفتار لرزه‌ای قاب‌های سبک سرد نورد شده فولادی با مهاربند تسمه قطری و مقایسه آنها با مقادیر آیین نامه‌ای پرداخته شده است. پارامتر‌هایی که اثر آن‌ها بر رفتار مهاربند مورد بررسی قرار گرفته شامل سطح مقطع تسمه، نسبت عرض به ارتفاع قاب و فاصله‌ی بین ستونچه‌ها است. در این مطالعه اثرات هم-زمان رفتار غیرخطی فولاد، وجود تغییر شکل‌های اولیه در مقاطع سرد نورد شده و تنش‌های پسماند ناشی از نورد سرد نیز در نظر گرفته شده-اند. مقاومت و تغییرمکان جانبی قاب‌های مورد نظر با استفاده از نرم‌افزار اجزای محدود ANSYS تعیین شده‌اند. نتایج تحلیل‌ها نشان می‌دهد که افزایش سطح مقطع تسمه‌ها و نسبت عرض به ارتفاع قاب باعث افزایش ظرفیت می‌شود ولی تغییر فاصله‌ی بین ستونچه‌ها تاثیر زیادی بر ظرفیت ندارد. هچنین ضریب رفتار قاب‌های مطالعه شده در محدوده‌ی 31/5 و 39/6 محاسبه شده است. بنابراین نتایج حاکی از آن است که ضریب رفتار ارائه شده توسط آیین‌نامه‌ها تا حدودی محافظه کارانه است.

کلیدواژه‌ها


عنوان مقاله [English]

Parametric study on lateral resistance and evaluation of seismic response modification factor-R of strap-braced cold-formed steel shear walls

نویسندگان [English]

  • Mehran ZEYNALIAN
  • Hossein Tajmir Riahi
  • Mehran Abbasi Sooreshjani
چکیده [English]

In this study, evaluation on lateral resistance and seismic response modification factor-R of strap-braced cold-formed steel shear walls is presented. Also, the results are compared with the prescibed values by the codes and standards. The structural parameters that are taken into account include: cross section of bracing straps, aspect ratio of the frames and studs’ spacing. In this study, the effects of nonlinear behavior of steel, geometric imperfection of cold formed sections and residual stresses induced by cold forming process are considered. The lateral strength and displacement of the frames will be determined by ANSYS finite element software. The results of the analysis show that the increase in straps’ cross-sections area and the ratio of width to height of the frame lead to increase of the frame capacity but changing the distances between the studs have no significant impact on the capacity of the frame. Also the response modification factors (R factors) of the studied frames are calculated in the range of 5.31 and 6.39. The results show that the prescribed R factors by the codes are conservative and can be improves, slightly.

کلیدواژه‌ها [English]

  • Cold-formed steel structures
  • Diagonal bracing strap
  • Seismic response modification factor
  • Residual stresses
  • Imperfection

 

[1] زینلیان، م.، رونق، ح. ر.، (1391)، محاسبه ضریب رفتار لرزه ای قاب‌های سرد نورد شده فولادی و مقایسه با مقادیر آیین نامه ای. اولین کنفرانس ملی مصالح و سازه های نوین در مهندسی عمران، دانشگاه سمنان، 26 و 27 بهمن.

 

[2] AISI. (2007), “Standard for cold-formed steel framing - Lateral design”. American Iron and Steel Institute, Washington, DC.

 

[3] FEMA-450. (2003), “NEHRP recommended provisions for seismic regulations for new buildings and other structures - Part 1 Provisions”. Building Seismic Safety Council, USA.

 

[4] AS/NZS4600. (2005), “Cold-formed steel structures”. Australian Building Codes Board.

 

[5] نشریه شماره 612. (1391)، آیین نامه طراحی و اجرای سازه های فولادی سرد نورد - بخش سازه، مرکز تحقیقات راه، مسکن و شهرسازی، ایران.

[6] Gad, E., Chandler, A., Duffield, C., Hutchinson, G. (1999). “Earthquake ductility and overstrength in residential structures”. Structural Engineering and Mechanics, vol. 8, pp. 361-382.

 

[7] Al-Kharat, M., Rogers, C. A. (2007). “Inelastic performance of cold-formed steel strap braced walls”. Journal of Constructional Steel Research, vol. 63, pp. 460-474.

 

[8] Zeynalian, M., Ronagh, H. (2012). “A numerical study on seismic performance of strap-braced cold-formed steel shear walls”. Thin-Walled Structures.

 

[9] Zeynalian, M., Ronagh, H. (2013). “Experimental study on seismic performance of strap-braced cold-formed steel shear walls”. Advances in Structural Engineering, vol. 16, pp. 245-258.

 

[10] Zeynalian, M., Ronagh, H. (2012). “An experimental investigation on the lateral behavior of knee-braced cold-formed steel shear walls”. Thin-Walled Structures, vol. 51, pp. 64-75.

 

[11] ANSYS I. (2012). ANSYS 14 - User’s manual.

 

[12] FEMA-356. (2000), “Pre standard and commentary for the seismic rehabilitation of buildings”. Building Seismic Safety Council, USA.

 

[13] Newmark, N. M., Hall, W. J. (1982). “Earthquake spectra and design”. Earth System Dynamics, vol 1.

 

[14] Miranda, E., Bertero, V. V. (1994). “Evaluation of strength reduction factors for earthquake-resistant design”. Earthquake spectra, vol. 10, pp. 357-379.

 

[15] EMA-451. (2006), “NEHRP recommended provisions-Design examples”. Building Seismic Safety Council, USA.

[16] BlueScope C. (2009), “Steel Guide- Complete distribution product guide” Version 3.

 

[17] BlueScopeSteel C. G550. (2003) “steel specification”.

 

[18] Pham , Macindoe. (1997), “Performance of G550 steel in house framing”.

 

[19] Rogers, C. A., Hancock, G. J. (1996). “Ductility of G550 sheet steels in tension - elongation measurements and perforated tests”. The University of Sydney.

 

[20] Schafer, B. W., Pekoz, T. (1998). “Computational modeling of cold-formed steel- Characterizing geometric imperfections and residual stresses”. Journal of Constructional Steel Research, vol. 47, pp. 193-210.

 

[21] USA, ASTM-E2126-07. (2007) “Standard test methods for cyclic (reversed) load test for shearresistance of walls for buildings”.