بهینه‌سازی همزمان عیارحد و ظرفیت کارخانه‌ی فرآوری با لحاظ کردن عدم قطعیت قیمت

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه تهران

چکیده

عیار حد و ظرفیت تولید دو متغیر مؤثر در طراحی و مطالعات امکان‌سنجی پروژه های معدنی می‌باشد و محاسبه و بهینه سازی آن ها نقش مهمّی در اقتصاد عملیات معدنکاری ایفا می‌کند. برای تعیین و بهینه کردن عیار حد کوشش های بسیاری صورت گرفته است که بارزترین آنها الگوریتم Lane است. هدف این تحقیق بهینه‌سازی هم‌زمان عیار حد و ظرفیت تولید کارخانه‌ی فرآوری با لحاظ کردن عدم‌قطعیت قیمت است. برای این کار با اعمال تغییراتی جزئی در الگوریتم Lane و صورت‌بندی آن در قالب یک مسئله‌ی برنامه‌ریزی غیرخطی، مدلی طرّاحی شد که قابلیت بهینه‌سازی همزمان دو متغیر پیش‌گفته را دارد. برای لحاظ کردن عدم قطعیت قیمت از روشی ابتکاری مشابه روش مدل‌سازی براونی هندسی بهره گرفته و عملکرد مدل با استفاده از داده‌های یک معدن فرضی مس به کمک افزونه‌ی Solver در نرم افزار Excel ارزیابی شد. بر اساس نتایج به‌دست آمده، ظرفیت پیشنهادی کارخانه در بازه‌ی 16 تا 17، با میانگین 5/16 میلیون تن در سال می‌باشد. این بازه بر عیار حد بهینه‌ی 17/0 تا 2/0، با میانگین 19/0 درصد انطباق دارد و ارزش خالص فعلی نیز بین 900 تا 1200با میانگین 1080 میلیون دلار است. توزیع ظرفیت بهینه‌ی کارخانه‌ی فرآوری اندکی چولگی منفی و توزیع عیار حد بهینه اندکی چولگی مثبت از خود نشان می‌دهند، و توزیع ارزش خالص فعلی بیشینه تقریباً متقارن و نرمال است

کلیدواژه‌ها


عنوان مقاله [English]

Simultaneous optimization of cut-off grade and capacity of mineral processing plant

نویسندگان [English]

  • Farzam Saffariyan 1
  • Ahmadreza Sayadi 1
  • Aliasghar Khodayari 2
1
2
چکیده [English]

Cut-off grade and capacity of processing plant are two factors influencing the design and the feasibility study of mine and calculation of these two plays an important role in mining economy. The main purpose of this study is to optimize the cut of grade and production capacity considering price uncertainty, simultaneously. Slight changes on lane algorithm and its formulation as a nonlinear programming problem were done, leading to design a model that can optimize the both factors simultaneously. A heuristic model similar to geometric Brownian model has been used to consider uncertainty in the model. An assumed copper mine data were used to model verification. Solver plugin in excel for model solving was used. Finally, the recommended values for plant’s capacity were in range of between 16 and 17 with mean value of 16.5 million tons. This value for cut of grade is between 0.17 to 0.2 with the mean value of 0.19 percent, and for net present value is between 900 to 1200 with the mean value of 1080 million dollars. The optimum capacity distribution of processing plant has slight negative skewness, optimum cut of grade distribution has slight positive skewness and approximately maximum net present value has normal distribution.

کلیدواژه‌ها [English]

  • Optimization
  • Cut-off grade
  • Mineral Processing plant capacity
  • Price uncertainty
  • Lane algorithm
1-Taylor, H.K., 1972. General background theory of cut-off grades, Institution of Mining and Metallurgy Transactions, Section A, pp. 160–179.
2-Taylor, H.K., 1985. Cut-off grades––some further reflections. Institution of Mining and Metallurgy Transactions, Section A, pp. 204–216.
3-Osanloo, M. Azimi, Y. Esfahanipour, A.2011. An uncertainty based multi-criteria ranking system for open pit mining cut-off grade strategy selection. Resources Policy Magazine, Vol.38, pp. 212-223.
4- Osanloo, M., Ataei, M., 2003. Using equivalent grade factors to find the optimum cut- off grades of multiple metal deposits, Mineral Engineering, Vol. 16, No. 8, pp. 771- 776.
5- Asad, M.W.A., 2007. Optimum cut- off grade policy for open pit mining operations through net present value algorithm considering metal price and cost escalation, Engineering Computations: International Journal for computer- aided engineering and software Vol. 24, No. 7, pp.723- 736.
6- Cairns, Robert D., Shinkuma, Takayoshi, 2004.The choice of the cut- off grade in mining, Resources Policy, Vol. 29, Issue 3-4, pp. 75-81.
7- Bradley, Paul G., 1980. Modeling mining: Open pit copper production in British Columbia, Resources Policy Vol. 6, Issue 1, pp.44-59.
8- Lane, K.F., 1964. Choosing the optimum cut-off grade. Quarterly of the Colorado School of Mines, Vol. 59, No 4, pp. 811–829.
9- Dagdelen,K.,Kawahata,K.,2008.Value creation through strategic mine planning and cut off grade optimization. Mining Engineering, Vol. 60, No. 1, pp. 39–45.
10- Cavender ,B., 1992.Determination of the optimum life time of a mining project Using discounted cash flow analysis and option pricing techniques. Mining Engineering, Vol. 44, No. 10, pp. 1262–1268.
11- Schaap, W., 1986, Optimum scale of an open pit operation: discount rate and risk, Bulletin and Proceedings of the Australian Institute of Mining and Metallurgy, Vol. 291, No. 5, pp. 49-54.
12- King,B.,2011.Optimal mining practice in strategic planning. Journal of Mining Science, Vol. 47, No. 2, pp. 247–253.
13- Dimitrakopoulos ,R., AbdelSabour,S.A.,2007. Evaluating mine plans under uncertainty: Can the real options make a difference? Resources Policy, Vol. 32, Issue 3, pp.116–125.
14- Wells, H.M., 1978. Optimization of mining engineering design in mineral valuation. Mining Engineering Vol. 30, No. 12, pp. 1676–1684.
 15- Lizotte, Y., Elbrond ,J., 1982. Choice of mine-mill capacities and production schedules using open-ended dynamic programming. CIM Bulletin, Vol. 75, Issue 835(3), pp. 154–163.
16- Abdel Sabour, S.A., 2002.Mine size optimization using marginal analysis. Resources Policy, Vol. 28, Issue 3–4, pp. 145–151.
17 - Shinkuma, Takayoshi, Nishiyama, Takashi, 2000. The grade selection rule of the metal mines; an empirical study on copper mines, Resources Policy, Vol. 26, Issue 1, pp. 31- 38.
18 - Shinkuma, Takayoshi, 2000. A generalization of the Cairns- Krautkraemer model and the optimality of the mining rule, Resource and Energy Economics, Vol. 26, pp.147- 160.
19 - Farrow, Scott, Krautkraemer, Jeffery A., 1989. Extraction at the intensive margin (Metal supply and grade selection in response to anticipated and unanticipated price changes), Resources and Energy (North- Holand), Vol. 11, pp. 1- 21.
20- Brandimarte, P., 2006. Numerical Methods in Finance & Economics, A MATLAB based Introduction - Paolo Brandimarte. John Wiley & Sons, USA.
21- Dias, M A G, 2004. Valuation of exploration and production assets: An overview of real option models. Journal of Petroleum Science and Engineering, Vol. 44, pp. 93-114.
22- Dixit, A. K., 1994. Investment under uncertainty. Princeton university press.
23- Taylor, H.K; 1986; “Rates of working of mines, a simple rule of thumb”, Trans. Inst. of Mining and Metallurgy, Section A., Vol. 95, pp. 203-204.
24- Info Mine Inc, 2011. Mine and mill equipment cost. <http://www.infomine.com>.
25- Info Mine Inc, 2013. Mine and mill equipment cost. <http://www.infomine.com>.
26- Khoshfarman. M, Sayadi. A. R, Khaalesi. M. R, 2014. A Parametric cost model for mineral grinding mills. Int. Journal of Mineral engineering, Vol. 55, pp. 96-102.
27- London Metal Exchange official website 2014.
28- شرکت مهندسین مشاور پارس اولنگ، گزارش بهره‌برداری از معدن مس سونگون، 1390.