مدل سازی و شبیه سازی رفتار کمانشی نانو سیم های سیلیسیم <100> و <111> با استفاده از روش مکانیک ساختاری

نوع مقاله: کاربردی

نویسندگان

1 دانشگاه صنعتی شاهرود

2 دانشگاه شاهرود

چکیده

در این مقاله با استفاده از روش مکانیک ساختاری و نرم افزار ABAQUS نانو سیم‌های سیلیسیم و مدل‌سازی و تحلیل شده است. میدان‌های نیروی بکار گرقته شده جهت مدل‌سازی در این مطالعه، میدان نیروی DREIDING است. در این تحلیل بار بحرانی کمانشی برای ضخامت-های 1 تا 4 نانومتر با طول‌های 5/0 تا 20 نانومتر محاسبه شده است. نتایج نشان می‌دهد بار بحرانی کمانشی در نسبت های طول به ضخامت نانوسیم، کمتر از 10 از رابطه اولر منحرف می‌شود. در یک ضخامت و طول یکسان، بیشینه مقدار بار بحرانی کمانشی به نانوسیم تعلق دارد. نتایج حاصل از این روش در مقایسه با روش دینامیک مولکولی با سرعت بیشتر محاسبه می‌شود و مطابقت مطلوبی با آن دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and Simulation Buckling Behavior of Silicon <100> and <111> Nanowires Using the Structural Mechanics Approach Method

نویسنده [English]

  • Amin Yasini 1
چکیده [English]

In this research, Si and nanowires with different lengths between 0.5 to 20 nm and thicknesses between 1 to 4 nm, are investigated by using structural mechanics approach and numerical method by ABAQUS software. DREIDING force field is used for force field. In this analysis critical buckling load are calculated. The results of this study show that critical load in ratio of the length of the nanowire thickness less than 10 will be diverted from the Euler equation. The same thickness and length, Si nanowires had the maximum critical buckling load. this method in comparison of other than methods such as molecular dynamics has higher analyzing speed and suitable accuracy.

کلیدواژه‌ها [English]

  • Silicon nanowires
  • Young's module
  • Critical buckling load
  • Mechanics Approach Method
[1] Y. C. Lin., K. C. Lu., W. W. Wu., J. W. Bai, L. J. Chen., K. N. Tu., Y.Huang.,(2008) “Single Crystalline PtSi
Nanowires, PtSi/Si/PtSi Nanowir Heterostructures and Nanodevices”, Nano Lett., 8, 913
[2] H. T. Chen., S. I. Hsieh., C. J. Lin., Y. C. King., (2006) “Degradation Dependent on Channel Width in
Sequential Lateral Solidified Poly-Si Thin FilmTransistors”, IEEE Electron Device, 27 ,272 – 274
[3] A.D. Zdetsis, E.N. Koukaras, C.S. Garoufalis, (2008) “Novel effects in finite-length silicon nanowires”, Phys.
Stat. Sol. (a)205, 2625–2629, 2008.
[4] C.L. Hsin, W. Mai, Y. Gu, Y. Gao, C.T. Huang, Y. Liu, L.J. Chen, Z.L. Wang, (2009) “Elastic Properties and
Buckling of Silicon Nanowires” Adv.Mater. 20 3919–3923
[5] Mousumi Upadhyay Kahaly and Umesh V. Waghmare., (2007) “Size dependence of thermal properties of
armchair carbon nanotubes: A first-principles study”, Appl. Phys. Lett. 91 203112–203112-3
[6] Y.S. Sohn, J. Park, G. Yoon, J. Song, S.W. Jee, J.H. Lee, S. Na, T. Kwon, K. Eom., (2010) “Mechanical
Properties of Silicon Nanowires”, Nano. Res. Lett., 5, 211–216
[7] Lee, B., and R. E. Rudd, (2007) "First principles study of the Young's modulus of Si nanowires", Phys.
Rev. B 75, 195328
[8] Lee, B., and R. E. Rudd, (2007) “"First-principles calculation of mechanical properties of Si nanowires
and comparison to nanomechanical theory ”, Phys. Rev. B 75, 041305 R
[9] Al'ona Furmanchuk, Olexandr Isayev, Tandabany C. Dinadayalane, and Jerzy Leszczynski, Car_Parrinello,
(2011) “ Molecular Dynamics Simulations of Tensile Tests on SiNanowires ”, J. Phys. Chem.
C 115, 12283–12292
[10] Al'ona Furmanchuk, Olexandr Isayev, Tandabany C. Dinadayalane, Danuta Leszczynska, Jerzy Leszczynsk,
(2012) “Mechanical properties of silicon nanowires, Computational Chemistry” , DOI:
10.1002/wcms.1108
[11] Tabib-Azar, M., M. Nassirou, R. Wang, S. Sharma, T. I. Ka-mins, M. S. Islam, and R. S. Williams,
(2005) "Mechanical properties of self-welded silicon nanobridges" ,Appl. Phys. Lett. 87, م 113102
[12] Jing Yuhang, Meng Qingyuan, and Zhao Wei, 2009,"Atomistic simulations of the tensile and melting
behavior of siliconnanowires", Semiconductors, 30

[13] Jing Yuhang, Meng Qingyuan,2009, "Molecular dynamics simulation on the buckling behavior of silicon
nanowires under uniaxial compression, Computational", Materials Science 45 ,321–326
[14] Ma, L., J. Wang, J. Zhao, and G. Wang, “Anisotropy in stability and Young’s modulus of hydrogenated
silicon nanowires ”, Chem. Phys. Lett. 452, 183, 2008
[15] Leu, P. W., A. Svizhenko, and K. Cho, “Ab initio calculations of the mechanical and electronic properties of
strained Si nanowires ” , Phys. Rev. B, 77, 235305, م 2008
[16] V. Parvaneh, M. Shariati, “ Effect of defects and loading on prediction of Young’s modulus of SWCNTs ”,
Acta Mech. 216 , 281–289, 2011
[17] V. Parvaneh, M. Shariati, A.M. Majd Sabeti, H. Torabi, “Influence of Boundary Conditions and Defects on
the Buckling Behavior of SWCNTs via a Structural Mechanics Approach”, J. Nanomater., 297902,
2011
[18] V. Parvaneh, M. Shariati, H. Torabi, “Frequency analysis of perfect and defective SWCNTs ”, Comp.
Mater.Sci 50 2051–2056, 2011
[19] Vali Parvaneh, Mahmoud Shariati, Amir Masood Majd Sabeti, “Investigation of vacancy defects effects on
the buckling behavior of SWCNTs via a structural mechanics approach”, European Journal of
Mechanics A/Solids 28,1072–1078, 2009
[20] Vali Parvaneh, Mahmoud Shariati, Hamid Torabi & Amir Masood Majd Sabeti, “Torsional Buckling
Behavior of SWCNTs Using a Molecular Structural Mechanics Approach Considering Vacancy
Defects”, Fullerenes, Nanotubes and Carbon Nanostructures, 20:8, 709-720, 2012
[21] Stephen L. Mayo, Barry D. Olafson, and William A. Goddard III, “DREIDING: A Generic Force Field for
Molecular Simulations”, J. Phys. Chem. 94, 8897-8909, 1990.
[22] A. J. Lu., R. Q. Zhang,a_ and S. T. Lee, “Tunable electronic band structures of hydrogen-terminated
silicon nanowires”, Appl. Phys. Lett, 92, 203109, 2008
[23] Boon K. Teo,Shu-Ping Huang, R.Q. Zhang, Wai-Kee Li., “Theoretical calculations of structures and
properties of one-dimensional silicon-based nanomaterials: Particularities and peculiarities of silicon
and silicon-containing nanowires and nanotubes”, Coordination Chemistry Reviews 253, 2935–
2958, 2009
[24] J.G. Collins, W.J. Giardini, A.J. Leistner, M.J. Kenny, “The influence of Young's modulus on roundness in
silicon sphere fabrication Avogadro constant” IEEE Trans.Instrum. Meas., 46, 572, 1997
[25] J. J. Wortman and R. A. Evans, “Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and
GermaniumJ ”, Appl. Phys. 36, 153, 1965.
[26] Kizuka, T., Y. Takatani, K. Asaka, and R. Yoshizaki, “Measurements of the atomistic mechanics of single
crystalline silicon wires of nanometer width”. Phys. Rev. B 72, 035333, 2005
[27] Beer, Ferdinand P; and Johnston, E.Russell; “Mechanics of Material ”, Mc Graw-Hill, 2nd ed, 1915