توسعه یک مدل ترمودینامیکی جهت شبیه‌سازی بلادرنگ رفتار گذرای موتور توربوجت در محیط سیمولینک

نوع مقاله : پژوهشی

نویسندگان

مجتمع دانشگاهی هوافضا

چکیده

مطالعه حاضر به توسعه یک مدل دینامیکی با قابلت عملکرد بلادرنگ برای کاربرد در مدل‌سازی آیروترمودینامیک موتورهای توربوجت در محیط سیمولینک نرم‌افزار متلب می‌پردازد. عناصر اختصاصی موتور به وسیله معادلات غیر خطی و با استفاده از روش دینامیک حجم بین اجزاء مدل‌سازی شده‌اند. به واسطه استفاده از متغیرهای نقطه طراحی در فرایند شبیه‌سازی، مدل قابلیت تطابق با ویژگی‌های یک موتور خاص را دارا می‌باشد. در مدل‌سازی دینامیکی سه عامل دینامیک شفت، دینامیک حجم و دینامیک انتقال حرارت در مدل مورد نظر گنجانده شده است. جهت اعتبار سنجی نتایج مدل، ترم‌های دور موتور و نیروی پیشرانش در یک عملیات شتاب معکوس با نتایج نرم‌افزار GSP مورد مقایسه قرار گرفته است. نتایج حاصله توانایی مدل را در شبیه‌سازی عملکرد گذرا نشان می‌دهد به نحوی که بیشینه خطا کمتر از 4% برآورد می-گردد. سپس روشی نوین جهت کاهش زمان محاسبات و ایجاد قابلیت عملکرد به صورت بلادرنگ، مورد بررسی قرار گرفت. نتایج نشان دهنده آن است که می‌توان با انتخاب گام زمانی ثابت برای حل‌گر نرم افزار و مقیاس نمودن کوچکترین حجم (در بین حجم کنترل‌های مشخص شده در مدل) بر حسب همان گام زمانی، به قابلیت عملکرد بلادرنگ دست یافت. خطای محاسبات پارامترهای اساسی موتور در این شرایط، کمتر از 5/0% می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

DEVELOPMENT OF A DYNAMIC MODEL FOR SIMULATION OF REAL-TIME TRANSIENT TURBOJET ENGINE PERFORMANCE IN SIMULINK

نویسندگان [English]

  • Mohammad Faraji
  • Mehdi Jahromi
  • Jamasb Pirkandi
  • Mostafa mahmoodi
  • Javad Ezani
چکیده [English]

This study deals with developing a dynamic model with capacity for use in aero-Thermodynamic real-time performance modeling of turbojet engines in MATLAB/Simulink environment. The elements of the engine are modeled by means of non-linear equations and using the inter component volume dynamics method. Through the use of the design point variables in the simulation, the model is capable to adapting with the characteristics of a particular engine. The three factors including, rotor dynamic, volume dynamic and heat soakage are considered in the dynamic model. To validate the modeling approach, the rotational speed and net thrust are compared with the results of the GSP program. The results show the ability of the model to simulate the transient performance such that the maximum error is estimated less than 4 percent. Then a new method to reduce the computational time and create a real-time performance capabilities, was studied. The results indicate that it is possible to select a fixed time step for solver and time scaling the smallest volume (from specified control volumes in the model), the real-time ability to be achieved. In these circumstances, the error in calculation of basic parameters of the engine is less than 0.5 percent.

کلیدواژه‌ها [English]

  • Aero-Thermodynamic
  • Turbojet
  • Simulink
  • Simulation
  • modeling
  • Real-Time
[1] Asgari, H., XiaoQi, C., Sainudiin, R. (2013). “Modelling and Simulation of Gas Turbines”. Modelling
Identification and Control, Vol. 20 , n. 3, pp.253-268.
[2] Novikov, Y. (2012). “Development of a High-Fidelity Transient Aerothermal Model For a Helicopter
Turboshaft Engine For Inlet Distortion And Engine Deterioration Simulations”. Master of Science in
Aerospace Engineering Dissertation, Middle East Technical University.
[3] Changduk, K. Park, J. (2004). ”Trannsient Performance Simulation of Propulsion System for CRW Type UAV
Using Simulink”. ICAS 2004.
4] منتدری، م ، رفرروادی فراهانی، م ی 1387 ، مدل سازی ر ش یه سازی لاملارد یکروی گاز هکایی وه مندکر طراضی سی ستم کنترل ]
107- سکخت ندریه وی المللی لالکم مهندسی داندگاه لالم ر رنعت ایران، لد 19 ، شماره 10 -ب رفسه 99
[5] Rahman, NU., Whidborne, JF. (2008). “A Numerical Investigation Into The Effect of Engine Bleed on Performance
of a Single-Spool Turbojet Engine” .Journal of Aerospace Engineering, Vol.222 , pp 939-
949.
[6] Martin, S., Wallace, I., and Bates, D.G. (2008). “Development and Validation of an Aero-Engine Simulation
Advanced Controller Design”. American Control Conference, 2008, pp. 2334-2339
[7] Martin, S. (2009). “Development and Validation of a Civil Aircraft Engine Simulation Model For Advanced
Controller Design”. PhD Dissertation Leicester University.
[8] Chiesa, S., Medici, G.,and Balbo, M. (2012). “Turbojet Analytical Model Development And Validation”. 28th
ICAS.
9] من صکری، ح ، مداهری، ک ی 1391 ، ش یه سازی لاملارد ضالت گذرای مکیکر یکروک ت در دررهای وات، وی ستمی کنفرانت ساتنه ]
مهندسی ماانی ، شیراز، داندگاه شیراز
[10] Ujam, A.J., Ifeacho, F.,and Anakudo, G. (2013). “Modeling Performance Characteristics of a Turbojet
Engine”. Journal of Manufacturing, Material and Mechanical Engineering Research, Vol.1 , n.1 ,
pp.1-16.
[11] Bettocchi, R., Pinelli, M., Spina, P. R., Venturini, M. and Burgio, M. (2004) “Set up of a Robust Neural
Network for Gas Turbine Simulation”, ASME Turbo Expo 2004, Vienna, Austria. Vol.4 , pp.543-
551.
[12] Walsh, PP., Fletcher, P.“Gas Turbine Performance”. Blackwell Science Publishing ,Inc. Ed 2. 2004.
[13] Cohen, H., Ragers, GFC., Saravanamuttoo, HIH. “Gas Turbine Theoury”. Longman Group. Ed 4. 1996.
[14] Burlamaqui Filho, F.A.C., Goes, L.C.S., Oliveira, A.B.V., Bosa, R.W., and Fernandes, G.S. (2012).
“Dynamic Modelling Nonlinear and Control System for a Turboshaft”. 12th Pan-American Congress
of Applied Mechanics, Port of Spain, Trinidad.
[15] Schur, F. (2013). “a Transient Model of a Turbofan Engine in Simulink”. Deutscher Luft- und Raumfahrt
Congress.
[16] GSP Development Team., (2013). “GSP 11 User Manual”. National Aerospace Laboratory (NLR),
www.gspteam.com.
[17] User Manual- MATLAB (R2014a).
[18] Sanghi, V., Lakshmanan, B.K. (2001). “Aerothermal Model for Real-Time Digital Simulation of a Mixed-
Flow Turbofan Engine”. Journal of Propultion and power, Vol.17 , n.3 ,629-635.
مجله