تحلیل پارامتری و بهینه سازی سیکل تبرید اجکتوری فوق بحرانی همراه با سیال عامل‌های مختلف به کمک شبکه عصبی مصنوعی و الگوریتم بهینه سازی پرندگان

نوع مقاله : کاربردی

نویسندگان

دانشگاه آزاد اسلامی، واحد همدان، باشگاه پژوهشگران جوان و نخبگان

چکیده

در این مقاله، به بررسی پارامتری و بهینه سازی سیکل تبرید اجکتوری همراه با سیال عامل های مختلف پرداخته شده است که قابلیت استفاده در بخشی از فرایند استفاده از انرژی خورشیدی را دارا می‌باشد. مزیت اصلی استفاده از اجکتور در سیکل های تبرید که معمولاً به جای کمپرسور بکار می رود، سادگی در ساخت و نگه داری، اطمینان پذیری بالا و هزینه ی کم می باشد. در این مطالعه، سیکل تبرید اجکتوری فوق بحرانی با استفاده از نرم‌افزار EES مدل خواهد شد و اثرات پارامترهای مختلف مانند دما و فشار اجزا گوناگون سیکل، بر روی ضریب عملکرد و نسبت مکش مورد بررسی قرار می گیرد. در ادامه، ضریب عملکرد سیکل تبرید اجکتوری فوق بحرانی برای 4 سیال عامل مختلف به کمک ترکیب شبکه عصبی مصنوعی و الگوریتم بهینه‌سازی پرندگان بهینه‌سازی خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Parametric analysis and optimization of the supercritical ejector refrigeration cycle with different working fluids using Artificial neural network and particle swarm optimization algorithm

نویسندگان [English]

  • Navid Freidoonimehr
  • Foad Nazari
چکیده [English]

In this paper, parametric analysis and optimization of the transcritical ejector refrigeration cycle using different working fluids have been proposed which can be employed in the parts of solar energy processes. The main advantages of using ejector in the refrigeration cycles, which often use instead of the compressor, are simplicity in construction and maintenance, high reliability and low cost. In this study, the transcritical ejector refrigeration cycle is modelled using EES software and the effects of different parameters such as temperature and pressure of different parts of cycle on the coefficient of performance and entrainment ratio are investigated. In continued, the coefficient of performance of the transcritical ejector refrigeration cycle for four different working fluids is optimized using the combination the Artificial Neural Network and Particle Swarm Optimization algorithm.

کلیدواژه‌ها [English]

  • Refrigeration cycle
  • Transcritical cycle
  • Ejector
  • Artificial Neural Network
  • particle swarm optimization algorithm
[1] G. Lorentzen, (1994) “Revival of Carbon Dioxide as a Refrigerant”. International Journal of Refrigeration,
vol. 17, No. 5, pp. 292-301.
[2] J. Yu, J., H. Chen, H., Y. Ren, and Y. Li, (2006) “A New Ejector Refrigeration System with an Additional Jet
Pump”. Applied Thermal Engineering, Vol. 26, No. 2, pp. 312-319.
[3] M. Nakagawa, and H. Takeuchi, (1998) “Performance of Two Phase Ejector in Refrigeration Cycle”, presented
at the Proceedings of 3rd International Conference on Multiphase Flow, France.
[4] B. Zheng, and Y. Weng, (2010) “A Combined Power and Ejector Refrigeration Cycle for Low Temperature
Heat Sources”. Solar Energy, Vol. 84, No. 5, pp. 784-791.
[5] D. Hong, G. Chen, L. Tang, and Y. He, (2011) “A Novel Ejector-Absorption Combined Refrigeration Cycle”.
International Journal of Refrigeration, Vol. 34, No.7, pp. 1596-1603.
[6] N. Al-Khalidy, (1998) “An Experimental Study of an Ejector Cycle Refrigeration Machine Operating on R113:
Etude Expérimentale D'une Machine Frigorifique à Ejecteur au R113”. International Journal of
Refrigeration, Vol. 21, No. 8, pp. 617-625.
[7] D. W. Sun, (1999) “Comparative Study of the Performance of an Ejector Refrigeration Cycle Operating with
Various Refrigerants”. Energy Conversion and Management, Vol. 40, No. 8, pp. 873-884.
[8] J. Yu, G. Tian, and Z. Xu, (2009) “Exergy Analysis of Joule–Thomson Cryogenic Refrigeration Cycle with
an Ejector”. Energy, Vol. 34, No. 11, pp. 1864-1869.
[9] R. Yapıcı, (2008) “Experimental Investigation of Performance of Vapor Ejector Refrigeration System Using
Refrigerant R123”. Energy Conversion and Management, Vol. 49, No. 5, pp. 953-961.
[10] J. Chen, and Z. Yan, (1988) “Optimal Performance of an Endoreversible-Combined Refrigeration Cycle”.
Journal of Applied Physics, Vol. 63, No. 10, pp. 4795-4798.
[11] M. Rashidi, N. Galanis, F. Nazari, A. Basiri Parsa, and L. Shamekhi, (2011) “Parametric Analysis and
oOptimization of Regenerative Clausius and Organic Rankine Cycles with Two Feedwater Heaters
Using Artificial Bees Colony and Artificial Neural Network”. Energy, Vol. 36, No. 9, pp. 5728-5740.
[12] K. Atashkari, N. Nariman-Zadeh, A. Pilechi, and A. Jamali, X. Yao, (2005) “Thermodynamic Pareto
Optimization of Turbojet Engines Using Multi-Objective Genetic Algorithms”, International Journal
of Thermal Sciences, Vol. 44, No. 11, pp. 1061-1071.
13 [ زارع، ون نی نیرزاده ) 1391 (، "طراحی هینه میدل رمایی صداهای پرهدار ا ر ش الگ ریتم هینهسازی زنی ر عست"، مجله [
.29- مهندسی م انی مدرس، سال 12 ، شماره 5، صداه 22
14 [ رودری، هیهانی نیا انگارن یس ) 1391 (، " هینهسازی د هدفه ر لید رمای از رلدا نیر اههای سی ت ررقییی"، مجله مهندسی [
.132- م انی مدرس، سال 12 ، شماره 4، صداه 120
[15] M. Rashidi, M. Ali, N. Freidoonimehr, and F. Nazari, (2013) “Parametric Analysis and Optimization of
Entropy Generation in Unsteady MHD Flow Over a Stretching Rotating Disk Using Artificial Neural
Network and Particle Swarm Optimization Algorithm”. Energy, Vol. 55, pp. 497-510.
[16] M. Rashidi, O. Anwar Bég, A. Basiri Parsa, and F. Nazari, (2011) “Analysis and Optimization of a
Transcritical Power Cycle with Regenerator Using Artificial Neural Networks and Genetic
Algorithms”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and
Energy, Vol. 225, No. 6, pp. 701-717.
[17] J. Wu, and J. Chan, (2009) “Faulted Gear Identification of a Rotating Machinery Based on Wavelet Transform
and Artificial Neural Network”, Expert Systems with Applications, Vol. 36, No. 5, pp. 8862-8875.
[18] J. Kennedy, and R. Eberhart, (1995) “Particle Swarm Optimization”, IEEE International Conference on
Neural Networks: Proceedings, the University of Western Australia, Perth, Western Australia.
[19] J. Yu, and Z. Du, (2010) “Theoretical Study of a Transcritical Ejector Refrigeration Cycle with Refrigerant
R143a”, Renewable Energy, Vol. 35, No. 9, pp. 2034-2039.