شبیه سازی و بهینه سازی مدار آسیاکنی شرکت روی تیران

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه تهران

2 دانشگاه تربیت مدرس

چکیده

امروزه شبیه سازی، ابزار بسیار مناسبی جهت بررسی فرآیندهای یک کارخانه است. در این پژوهش مدار آسیاکنی شرکت روی تیران به کمک نرم افزار ‌BMCS شبیه سازی شد. مدار آسیاکنی این شرکت دارای دو آسیای گلوله ای است که آسیای گلوله ای اول در مدار باز و دیگری در مدار بسته با هیدروسیکلون است. سرریز هیدروسیکلون به عنوان محصول مدار آسیاکنی شناخته می شود. پس از بررسی اولیه ی مدار این شرکت مشخص شد که بالا بودن اندازه ی P80 سرریز هیدروسیکلون یکی از مشکلات اصلی در فرآیند آسیاکنی به شمار می رود، زیرا در حال حاضر مقدار این پارامتر در حدود 107 میکرون است که تا هدف تعیین شده برای آن یعنی 74 میکرون اختلاف زیادی دارد. همچنین بار ورودی به مدار آسیاکنی این شرکت در بازه ی 370 تا 430 تن در روز تغییر می کند که از ظرفیت اسمی تعیین شده برای مدار آسیاکنی یعنی 500 تن در روز بسیار کمتر است. بعد از شبیه سازی مدار، به منظور بهینه سازی شرایط از طراحی آزمایشها به روش(CCD (Central Composite Design استفاده گردید. کاهش P80 سرریز هیدروسیکلون تا اندازه ی موردنظر، افزایش ظرفیت و کاهش درصد بار در گردش اهداف اصلی در انجام این پژوهش بودند. در نهایت مشخص شد که با استفاده از شرایط بهینه ی به دست آمده (نسبت به حالت فعلی مدار)، ظرفیت از 425.27 تن در روز به 476.79 تن در روز افزایش، مقدار P80 سرریز هیدروسیکلون از 107 میکرون به 93 میکرون کاهش و درصد بار در گردش نیز از 219.77 به 181.59 کاهش می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation and optimization of grinding circuit case study of Tiran zinc company

نویسندگان [English]

  • H.A mirzaei 1
  • A farzanegan 1
  • Z.S mirzaei 2
1
2
چکیده [English]

Today, simulation is a great tool for examining processes of a plant .In this paper, grinding circuit of Tiran zinc company was simulated by BMCS software. Grinding circuit of this company includes two ball mills, that first ball mill is in open circuit and another is in closed circuit with hydro cyclone. Overflow of hydro cyclone is known as product of grinding circuit. After initial studies on circuit of this company, it was found that high value of P80 of hydro cyclone overflow is a One of the main problems, because value of this parameter is almost 107 micron at the moment and it is different with determined target of 74 micron. Also input load to circuit is changed in the range from 370 to 430 t/day, that it is much less than determined nominal capacity of 500 t/day. After simulating the circuit, in order to optimization of conditions was used from the experimental design of CCD (Central Composite Design). In this study, reducing P80 of hydro cyclone overflow to the target size, increasing capacity and reducing percent of circulating load were main targets. Finally, it was found, that in the obtained optimal conditions (compared to the current state of the circuit), the capacity increases from 425.27 t/day to 476.79 t/h, P80 of hydro cyclone overflow decreases from 107 microns to 93 microns and also percent of circulating load decreases from 219.77 to 181.59.

کلیدواژه‌ها [English]

  • Simulation
  • ball mill
  • hydro cyclone
  • Optimization
  • CCD
[1] Napier-Munn, T.J., Morrell, S., Morrison, R. D., Kojovic, T. (1999). “Mineral comminution circuits, their operation and optimization”. Julius Kruttschnitt Mineral Research Center (JKMRCK), The University of Queensland.
]2[ پورکریمی، ض ، دهقانی احمدآبادی، ع ، نوعپرست، ، شهایی، س ض ، سلطانی، ب 1388 ، "شبیهسازی مدار خردایم کارخانه
ف هاا اسهوردی توسط نر افزار BMCS " نصریه دانصکده فنی، دوره 43 ، شماره 138
]3[ میرزایی، ز س ، فرزانگان، ا ب 1390 ، " بهینهسازی وملکرد هیدروسیکلون اولیه کارخانه ف هاا اسهوردی با روش شبیهسازی و
ج جوی ژن یک " نصریه روشهای ت لیلی و وددی در مهندسی م دن، پیم شماره دو ، دانصگاه یزد
[4] Farzanegan, A. (1998). “Knowledge-Based optimization of mineral grinding circuits”. Ph.D Thesis, McGill University, Canada.
[5] Spring, R. (1992). “NorBal3 software for material balance reconciliation”. Noranda Technology Center.
]6[ فرزانگان، ا ب 1389 ، راهنمای کاربری نر افزار BMCS بن ده چهار شرکت مهندسین فرآیند کاوان پارس
[7] Plitt, L.R. (1976). “A Mathematical Model of the Hydrocyclone Classifier”. CIM Bulleting, Vol. 69, No. 776, pp. 114-123. [8] King, R. P. (2001). “Modeling and Simulation of Mineral Processing Systems”. Department of Metallurgical Engineering, University of Utha, USA, pp. 121-124.
[9] Montgomery, D. C. (2001). “Design and analysis of experiments”. John Wiley & Sons, New York.
[10] Anderson, M. J., Whitcomb, P. J. (2000). “DOE Simplified: Practical Tools for Effective Experimentation”. USA. [11] Gupta, A., Yan, D. S. (2006). “Mineral Processing Design and Operations: An Introduction”. Elsevier Science. [12]Wills, B. A., Napier-Munn, T. J. (2007). “Wills’ Mineral Processing Technology”. Seventh Edition, Elsevier, England.