مدل سازی سیستم کنترل سرعت قطار الکتریکی با لحاظ لغزش چرخ بر روی ریل

نوع مقاله: پژوهشی

نویسندگان

1 دانشگاه علم و صنعت ایران

2 شرکت مهندسی و ساخت لکوموتیو مپنا

چکیده

از آنجا که حمل و نقل ریلی یکی از امن ترین و پاک ترین شیوه های حمل بار و مسافر است لذا تحقیق بر روی بهبود عملکرد زیر سیستم های آن می تواند موضوعی در راستای نیاز صنعت باشد. یکی از مهم ترین زیر سیستم های هر وسیله نقلیه ای بخش محرکه آن است. حرکت بر روی ریل به دلیل صیقلی بودن چرخ و ریل، به میزان بسیار کمتری از انرژی نسبت به حرکت خودرو بر روی سطح آسفالت نیاز دارد. لیکن کم بودن اصطکاک سبب در جا چرخیدن چرخ قطار بر روی ریل خواهد شد. اگر میزان درجا چرخیدن چرخ قطار از یک حدی بالاتر برود سبب کاهش شتاب قطار و کاهش عمر چرخ و ریل می گردد، لذا کنترل این میزان درجا چرخیدن چرخ دارای اهمیت ویژه ای است. از این‌رو داشتن مدلی جهت سیستم کنترل سرعت قطار الکتریکی با لحاظ لغزش چرخ بر روی ریل، می تواند مفید واقع گردد. در این مقاله پس از بیان تاریخچه کنترل لغزش، با کنار هم قرار دادن معادلات حرکت و استفاده از یک رویتگر چسبندگی قسمت مکانیکی سیستم مدل شده است. در زیر سیستم کنترل سرعت، جهت کنترل سرعت موتور قطار ،که از نوع موتور القایی است، روش کنترل برداری پیشنهاد گردیده است. با کنار هم قرار دادن اجزا مکانیکی، موتور الکتریکی و روش کنترل سرعت موتور، مدل مورد نظر بصورت کامل ارائه گشته است. سپس با انجام شبیه سازی در نقاط مختلف کاری صحت عملکرد مدل ارائه شده مورد ارزیابی و تائید قرارگرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the speed control system of electric train by considering of wheel slip

نویسنده [English]

  • sajad sadr 1
چکیده [English]

Since railway transportation is one of the greenest and safest ways for carrying passengers and freight, investigation on improving the performance of its sub-systems can be in line with requirements of industry. One of the most important sub-systems of each vehicles is its driving part. Due to smoothness of wheel and rail, comparing moving car on road, moving on rail needs more less energy. But this low friction can cause wheel slip and wheelspin. Rising the wheel slip more than a certain value, will cause decrement in acceleration and damages wheel and rail, so the control of wheel slip has a special importance. Therefore having a model of train’s speed control system equipped with wheel slip control can be useful. In this paper after literature survey of wheel slip control, by combining the movement equation and using an adhesion observer the mechanical part of system is obtained. For driving the induction motor of drive system, field oriented control is choose. By combining the mechanical part, induction motor and its drive the complete model is presented. By simulation in different operation points the performance of presented model is validated.
Adhesion, Electrical motor, Electric train, Modelling, Observer, Speed Control, Wheel Slip.

کلیدواژه‌ها [English]

  • Adhesion
  • Electrical motor
  • Electric train
  • Modelling
  • Observer
  • Speed Control
  • Wheel Slip
 

[1]           A. Steimel. (2010). "Electric Traction - Motion Power and Energy Supply: Basics and Practical Experience" Oldenbourg.

[2]           J. M. Allenbach, P. Chapas, M. Comte, and R. Kaller. (2008). "Traction électrique" Presses polytechniques et universitaires romandes..

[3]           L. Weng-Ching, L. Chun-Liang, H. Ping-Min, and W. Meng-Tzong. (2014). "Realization of Anti-Lock Braking Strategy for Electric Scooters". IEEE Transactions on Industrial Electronics, vol. 61, pp. 2826-2833.

[4]           M. Tanelli, L. Piroddi, and S. M. Savaresi. (2009). "Real-time identification of tire-road friction conditions". Control Theory & Applications, IET, vol. 3, pp. 891-906.

[5]           J. S. Lin and W. E. Ting. (2007). "Nonlinear control design of anti-lock braking systems with assistance of active suspension". Control Theory & Applications (IET), vol. 1, pp. 343-348.

[6]           H. o. Yamazaki, Y. Karino, T. Kamada, M. Nagai, and T. Kimura. (2007). "Effect of Wheel-Slip Prevention Based on Sliding Mode Control Theory for Railway Vehicles". Quarterly Report of Railway Technical Research Institute. vol. 48, pp. 22-29.

[7]           N. Mutoh, Y. Hayano, H. Yahagi, and K. Takita. (2007). "Electric Braking Control Methods for Electric Vehicles With Independently Driven Front and Rear Wheels" IEEE Transactions on Industrial Electronics. vol. 54, pp. 1168-1176.

[8]           J. J. Choi, S. H. Park, and J. S. Kim. (2007) "Dynamic Adhesion Model and Adaptive Sliding Mode Brake Control System for the Railway Rolling Stocks". Part F: J. Rail and Rapid Transit, vol. 221, pp. 313-320.

[9]           P. Khatun, C. M. Bingham, N. Schofield, and P. H. Mellor. (2003). "Application of Fuzzy Control Algorithms for Electric Vehicle Antilock Braking/Traction Control Systems". IEEE Transactions on Vehicular Technology, vol. 52, pp. 1356-1364.

[10]         S. H. Park, J. S. Kim, J. J. Choi, and H. o. Yamazaki (2008). "Modeling and Control of Adhesion Force in Railway Rolling Stocks". IEEE Control Systems Magazin vol. 28, pp. 44-58.

[11]         H. o. Yamazakiy, M. Nagai, and T. Kamada. (2004). "A Study of Adhesion Force Model for Wheel Slip Prevention Control". Jsme International Journal, vol. 47, pp. 496-501.

[12]         T. Watanabe. (2000). "Anti-slip Readhesion Control with Presumed Adhesion Force. - Method of Presuming Adhesion Force and and Running Test Results of High-speed Shinkansen Train-". Quarterly Report of Railway Technical Research Institute, vol. 41, pp. 32-36.

[13]         K. Ohishi, S. Kadowaki, Y. Smizu, T. Sano, S. Yasukawa, and T. Koseki (2006). "Anti-slip Readhesion Control of Electric Commuter Train Based on Disturbance Observer Considering Bogie Dynamics". presented at the 32nd Annual Conference on IEEE Industrial Electronics.

[14]         Y. Shimizu, K. Ohishi, T. Sano, S. Yasukawa, and T. Koseki. (2007). "Anti-slip/skid Re-adhesion Control Based on Disturbance Observer Considering Bogie Vibration," Power Conversion Conference - PCC '07, Nagoya, April 2-5..

[15]         M. Yamashita and T. Watanbe. (2003). "A Readhesion Control Method without Speed Sensor for Electric Railway Vehicles".  Electric Machines and Drives Conference .EMDC'03, June 1-4.

[16]         M. Yamashita and T. Watanbe. (2005). "A Readhesion Control Method without Speed Sensor for Electric Railway Vehicles". Quarterly Report of Railway Technical Research Institute, vol. 45, pp. 85-89.

[17]         W. Zhang, J. Chen, X. Wu, and X. Jin (2002). "Wheel/Rail Adhesion and Analysis by Using Full Scale Roller Rig" Wear, vol. 253, pp. 82-88.

[18]         O. Arias-Cuevas, Z. Li, and R. Lewis. (2011). "A Laboratory Investigation on the Influence of the Particle Size and Slip During Sanding on the Adhesion and Wear in the Wheel–Rail Contact". Wear, vol. 271, pp. 14-24.

[19]         M. Tomeoka, N. Kabe, M. Tanimotob, E. Miyauchib, and M. Nakatac, (2002). "Friction Control Between Wheel and Rail by Means of on-Board Lubrication". Wear, vol. 253, pp. 124-129.

[20]         A. Nayal, S. P. Gupta, and S. P. Singh. (2006). "Performance Analysis of  DC Motor Drive in Electric Traction with Wheel Slip Control". Journal of the Institution of Engineers, vol. 87, pp. 55-60.

[21]         C. R. Wasko. (1986). "AC Drives in Traction Applications," IEEE Transactions on Industry Applications, vol. 22, pp. 842 - 846.

[22]         Z. Ma, T. Zheng, and F. Lin. (2005). "Research on reciprocal power-fed AC drive test rig for electric traction applications". 8th International Conference on Electrical Machines and Systems, Nanjing, Sept 29-29.

[23]         R. Krishnan"Electric motor drives: modeling, analysis, and control". Prentice Hall.

[24]         B. K. Bose. (2006). "Power Electronics and Motor Drives Advances and Trends". Elsevier.

[25]         Liu-Jun, W. Wan-li, and W. Yang. (2002). "FOC and DTC: two viable schemes for induction motors torque control". IEEE Transactions on Power Electronics, vol. 17, pp. 779 - 878.

[26]         S. Alireza Davari, D. A. Khaburi, W. Fengxiang, and R. M. Kennel. (2012). "Using Full Order and Reduced Order Observers for Robust Sensorless Predictive Torque Control of Induction Motors," IEEE Transactions on Power Electronics, vol. 27, pp. 3424-3433.

[27]         S. Alireza Davari, D. A. Khaburi, and R. Kennel. (2012). "An Improved FCS-MPC Algorithm for an Induction Motor With an Imposed Optimized Weighting Factor". IEEE Transactions on Power Electronics, vol. 27, pp. 1540-1551.

[28]         W. Fengxiang, Z. Zhenbin, S. Alireza Davari, R. Fotouhi, D. Arab Khaburi, J. Rodriguez, et al.. (2014). "An Encoderless Predictive Torque Control for an Induction Machine With a Revised Prediction Model and EFOSMO". IEEE Transactions on Industrial Electronics, vol. 61, pp. 6635-6644.

[29]         S. A. Davari, D. A. Khaburi, F. Wang, and R. Kennel. (2013). "Robust sensorless predictive control of induction motors with sliding mode voltage model observer". Turkish Journal of Electrical Engineering & Computer Sciences, vol. 21, pp. 1539-1552.

[30]         K. Wei, J. Zhao, and T. Q. Xiaojie YouZheng. (2009). "Development of a Slip and Slide Simulator for Electric Locomotive Based on Inverter-Controlled Induction Motor". 4th IEEE Conference on Industrial Electronics and Applications., Xi'an, May 25-27.