بررسی عددی تأثیرپذیری افت فشار از نحوه آرایش فیبرها در فیلترهای هوا با استفاده از روش شبکه بولتزمن

نوع مقاله: پژوهشی

نویسندگان

1 Yazd

2 دانشگاه یزد

چکیده

فیلترهای فیبری از جمله رایج‌ترین سیستم‌های جمع‌آوری ذرات معلق در هوا هستند، یکی از کمیت‌های مهمی که در برآورد عملکرد فیلترها حائز اهمیت است، افت فشار می‌باشد. در این مقاله تأثیر نحوه چیدمان فیبرها در محیط فیلتر بر ضریب افت فشار بررسی شده است. سه آرایش موازی، جابجاشده و تصادفی برای مدل ساده شده فیلتر فیبری با کسر حجمی جامد متفاوت بررسی و تحلیل شده است. از آنجایی که روش شبکه بولتزمن در شبیه سازی هندسه های پیچیده بسیار تواناست، مدل سازی محیط فیلتر فیبری با استفاده از روش شبکه بولتزمن انجام شده است. نتایج حاصله با مراجع موجود مقایسه شده و مورد بحث قرار گرفته است. مشاهده می‌شود که مخصوصاً در کسر حجمی جامدهای پایین، استفاده از آرایش منظم به ضریب افت فشار بزرگتری نسبت به آنچه از آزمایشات تجربی به دست آمده و همچنین نسبت به آرایش تصادفی منجر می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

An investigation on the pressure drop of the particulate flow through fibrous filters using Lattice Boltzmann method

نویسندگان [English]

  • Marzie Babaie rabiee 1
  • Shahram Talebi 2
چکیده [English]

One of the most common systems to collect the suspended particles from the air is fibrous filters. An important parameter to evaluate the filters performance is pressure drop. In this work the influence of the arrangement of the fibers at the fibrous media on the pressure drop is studied. Three different parallel, staggered and random arrangements are considered to model the fibrous media. The effects of these arrangements are investigated at different solid volume fractions. The results are compared and discussed with existing empirical and semi analytical relations. It is observed that using regular arrangement results in larger pressure drop than random one or which is predicted by empirical tests.

کلیدواژه‌ها [English]

  • air filter
  • fibrous media
  • Numerical simulation
  • Lattice Boltzmann method
  • Pressure drop
  • random arrangement of fibers
 
[1]           Brown, R. C. (1993). Air filtration: an integrated approach to the theory and applications of fibrous filters: Pergamon press New York.
[2]           Spurny, K. R. (1998). Advances in Aerosol Gas Filtration: CRC Press.
[3]           Tien, C. (2012). Principles of filtration: Access Online via Elsevier.
[4]           Davies, C. N. (1973). Air filtration. London: Academic Press.
[5]           Jackson, G. W. and James, D. F. (1986). The permeability of fibrous porous media, The Canadian Journal of Chemical Engineering, vol. 64, pp. 364-374.
[6]           Kuwabara, S. (1959). The forces experienced by randomly distributed parallel circular Cylinder or Spheres in a viscous flow at small Reynolds numbers, Journal of The Physical Society of Japan, vol. 14.
[7]           Lee, K. W. and Liu, B. Y. H. (1982). Theoretical Study of Aerosol Filtration by Fibrous Filters, Aerosol Science and Technology, vol. 1, pp. 147-161.
[8]           Kirsch, V. A. (2007). Stokes flow in model fibrous filters, Separation and Purification Technology, vol. 58, pp. 288-294.
[9]           Liu, Z. G. and Wang, P. K. (1997). Pressure Drop and Interception Efficiency of Multifiber Filters, Aerosol Science and Technology, vol. 26, pp. 313-325.
[10]         Chen, S., Cheung, C. S., Chan, C. K., and Zhu, C. (2002). Numerical simulation of aerosol collection in filters with staggered parallel rectangular fibres, Computational Mechanics, vol. 28, pp. 152-161.
[11]         Liu, Z. G. and Wang, P. K. (1996). Numerical Investigation of Viscous Flow Fields Around Multifiber Filters, Aerosol Science and Technology, vol. 25, pp. 375-391.
[12]         Przekop, R., Moskal, A., and Gradon, L. (2003). Lattice-Boltzmann approach for description of the structure of deposited particulate matter in fibrous filters, Aerosol Science, vol. 34, pp. 133-147.
[13]         Rao, N. and Faghri, M. (1988). Computer Modeling of Aerosol Filtration by Fibrous Filters, Aerosol Science and Technology, vol. 8, pp. 133-156.
[14]         Fotovati, S., Vahedi Tafreshi, H., and Pourdeyhimi, B. (2010). Influence of fiber orientation distribution on performance of aerosol filtration media, Chemical Engineering Science, vol. 65, pp. 5285-5293.
[15]         Hosseini, S. A. and Vahedi Tafreshi, H., (2010). Modeling permeability of 3-D nanofiber media in slip flow regime, Chemical Engineering Science vol. 65 pp. 2249–2254.
[16]         Hosseini, S. A. and Vahedi Tafreshi, H., (2010),3-D simulation of particle filtration in electrospun nanofibrous filter, Powder Technology vol. 201, pp. 153–160.
[17]         Vahedi Tafreshi, H., A Rahman, M. S., Jaganathan, S., Wang, Q., and Pourdeyhimi, B. (2009). Analytical expressions for predicting permeability of bimodal fibrous porous media, Chemical Engineering Science, vol. 64, pp. 1154-1159.
[18]         Wang, Q., Maze, B., Tafreshi, H. V., and Pourdeyhimi, B. (2006). A case study of simulating submicron aerosol filtration via lightweight spun-bonded filter media, Chemical Engineering Science, vol. 61, pp. 4871-4883.
[19]         Wang, H., Zhao, H., Guo, Z., and Zheng, C. (2012). Numerical simulation of particle capture process of fibrous filters using Lattice Boltzmann two-phase flow model, Powder Technology, vol. 227, pp. 111-122.
[20]         Wang, H., Zhao, H., Wang, K., He, Y., and Zheng, C. (2013). Simulation of filtration process for multi-fiber filter using the Lattice-Boltzmann two-phase flow model, Journal of Aerosol Science, vol. 66, pp. 164-178.
[21]         Filippova, O. and Hänel, D. (1997). Lattice-Boltzmann simulation of gas-particle flow in filters, J. Fluid Mech., vol. 98, p. 36.
[22]         Lantermann, U. and Hänel, D. (2007). Particle Monte Carlo and lattice-Boltzmann methods for simulations of gas–particle flows, Computers & Fluids, vol. 36, pp. 407-422.
[23]         Succi, S. (2001). The Lattice Boltzmann Equation for fluid dynamics and beyond: Clarendon presss. Oxford.
[24]         Zou, Q. and He, X. (1997). On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Physics of Fluids, vol. 9, p. 1591.
[25]         Mei, R., Luo, L.-S., and Shyy, W. (1999). An accurate curved boundary treatment in the lattice Boltzmann method, Journal of Computational Physics, vol. 155, pp. 307-330.
[26]         Mei, R., Shyy, W., Yu, D., and Luo, L.-S. (2000). Lattice Boltzmann Method for 3-D Flows with Curved Boundary, Journal of Computational Physics, vol. 161, pp. 680-699.
[27]         Tahir, M. and Tafreshi, H. V. (2009). Influence of fiber orientation on the transverse permeability of fibrous media, Physics of Fluids, vol. 21, p. 083604.
[28]         Nabovati, A. and Sousa, A. C. M. (2007). Fluid flow simulation in random porous media at pore level using the lattice Boltzmann method, Journal of Engineering Science and Technology, vol. 2, pp. 226-237.
[29]         Ben Richou, A., Ambari, A., and Naciri, J. K. (2004). Drag force on a circular cylinder midway between two parallel plates at very low Reynolds numbers—Part 1: Poiseuille flow (numerical), Chemical Engineering Science, vol. 59, pp. 3215-3222.
[30]         Faxén, H. (1946). Forces exerted on a rigid cylinder in a viscous fluid between two parallel fixed planes: Generalstabens Litografiska Anstalts Förl.
[31]         Hosseini, S. A. and Tafreshi, H. V. (2010). Modeling particle filtration in disordered 2-D domains: A comparison with cell models, Separation and Purification Technology, vol. 74, pp. 160-169.