روش های تحلیل خرابی پیشرونده ناشی از بارگذاری انفجاری در قاب های خمشی فولادی

نوع مقاله: پژوهشی

نویسندگان

دانشگاه محقق اردبیلی

چکیده

یکی از روش های ارزیابی پتانسیل وقوع خرابی پیشرونده، روش مسیر بار جایگزین است که از طریق سناریوی حذف ستون و به طور مستقیم با برداشتن یک یا تعداد بیشتری از ستون ها صورت می پذیرد. ولی با این حال در این روش، آسیبی که می تواند از طریق انفجار به اعضای مجاور ستون حذف شده وارد شود نادیده گرفته شده و همین موضوع می تواند به یک پیش بینی نادرست از خرابی پیشرونده منجر شود. یک انفجار می تواند به تیرها و ستون های سازه آسیب وارد کرده و حتی باعث فروپاشی آنها گردد. از این رو در این تحقیق به منظور بررسی روش متداول مسیربار جایگزین در پیش بینی پتانسیل خرابی پیشرونده ناشی از بار گذاری انفجاری، مدل المان محدود سه بعدی یک ساختمان فولادی قاب خمشی 4 طبقه با استفاده از نرم افزار Abaqus/CAE 6.11 شبیه سازی گردید و به دو روش مسیر بارجایگزین و روش مستقیم اعمال بار انفجار مورد ارزیابی قرار گرفت. نتایج حاصل حاکی از آن است که اگر در هنگام ارزیابی پتانسیل وقوع خرابی پیشرونده، عامل شروع خرابی، بارگذاری انفجاری در نظر گرفته شود، پاسخ سازه در مقایسه با روش های متداولی که به ارزیابی وقوع خرابی پیشرونده می پردازند و در آنها عامل اولیه ایجاد خرابی پیشرونده نادیده گرفته می شود، متفاوت خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Progressive collapse analysis methods due to blast loading in steel moment frames

نویسندگان [English]

  • Meysam Bagheri pourasil
  • Yaghoub Mohammadi
  • Amin Gholizad
چکیده [English]

One of the methods for assessing the potential of progressive collapse occurrence is the APM method. This method done by direct removing of one or several columns. However, in this method the damage of adjacent elements of removed columns under blast conditions was ignored and this issue can lead to an incorrect prediction of progressive collapse. Therefore in this study to evaluate the potential of progressive collapse due to blast loading a 4st steel moment frame building with Abaqus/CAE 6.11 software is simulated, and two methods '' alternative load path and applied of blast load directly'' were evaluated in this study. The results indicate that in assessment of the potential of progressive collapse occurrence by considering the blast loading as the initial reason of failure, the structure response will be different compared with the common methods that used for evaluation of progressive collapse occurrence and in those methods the initial reason of progressive collapse was ignored.

کلیدواژه‌ها [English]

  • Progressive Collapse Blast Loading Steel moment frame Alternative path method Finite element method
 
[1] General Services Administration (GSA). (2003), Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington (DC) Office of Chief Architect.
[2] Astaneh-Asl, A.( 2007) “Progressive Collapse prevention of steel frames with shear connections.” department of civil and environmental engineering and center for catastrophic risk management University of California, Berkeley.
[3] Grierson, D., Safi, M., Xu, L., Liu, Y. (2005). Simplified methods for progressive collapse-analysis of buildings.  Proceedings of metropolis and beyond – structures congress, Reston(VA).
[4] Izaduddin, A., Vlassis, G., Elaghazouli, Y., Nethercot, A. (2008). Progressive collapse of multi-story buildings due to sudden column Loss-Part I: Simplified assessment framework.  Engineering Structure. 30(5), 1308-1318.
[5] Department of Defense – Unified Facilities (2013). Design of buildings to resist progressive collapse - UFC 4-023-03. Department of Defense, USA.
[6] Kim, J., Kim, T. (2009). Assessment of progressive collapse-resisting capacity of steel moment frames.  Journal of Constructional Steel Research. 65(1), 169-179.
[7] Khandelwal, K., El-Tawil S., Fahim, S. (2009). Progressive collapse analysis of seismically designed steel braced frames. Journal of Constructional Steel Research;5(3):699–708.
[8] Fu, F. (2009). Progressive collapse analysis of high-rise building with 3-D finite element modelling method. J Constr Steel Res ;65:1269-78.
[9] Liu, M. (2011). Progressive collapse design of seismic steel frames using structural optimization. Journal of Constructional Steel Research, Vol. 67, pp. 322–332.
[10] Fu, F. (2012). Response of a multi-storey steel composite building with concentric bracing under consecutive column removal scenarios. Journal of Constructional Steel Research 70. 115–126.
[11] Feng Fu, (2013),  Dynamic response and robustness of tall buildings under blast loading, Journal of Constructional Steel Research 80 299–307, 2009.
[12] H.M. Elsanadedy, T.H. Almusallam, Y.R. Alharbi, Y.A. Al-Salloum, H. Abbas,(2014), Progressive collapse potential of a typical steel building due to blast attacksOriginal Research Article, Journal of Constructional Steel Research, Volume 101, Pages 143-157.
[13] P.M. Stylianidis, D.A. Nethercot, (2015), Modelling of connection behaviour for progressive collapse analysis, Journal of Constructional Steel Research, Volume 113,  Pages 169-184
[14] Farshad Hashemi Rezvani, Amir Mohammad Yousefi, Hamid Reza Ronagh ,(2015) Effect of span length on progressive collapse behaviour of steel moment resisting frames,Original Research Article Structures, The Institution of Structural Engineers. Published by Elsevier Ltd.
[15] Seonwoong Kim, Cheol-Ho Lee, Kyungkoo Lee, (2015), Effects of floor slab on progressive collapse resistance of steel moment frames, Original Research Article Journal of Constructional Steel Research, Volume 110, , Pages 182-190.
[16] Osama Ahmed Mohamed,(2015), Calculation of load increase factors for assessment of progressive collapse potential in framed steel structures Case Studies in Structural Engineering, Volume 3, Pages 11-18
[17] 52.National Institute of Standard and Technology (NIST). (2007). Best practices for reducing the potential for progressive collapse in buildings. NISTIR 7396.
[18] American Society of Civil Engineers (ASCE). (2005). Minimum design loads for buildings and other structures (ASCE7-05). Reston (VA).
[19] Jensen, M. (2007). Introduction to LS-DYNA®Implicit. Livermore software technology corporation.
[20] ABAQUS theory manual. Pawtucket, R.I: Hibbitt, Karlsson and Sorensen, Inc.;(2011). Version 6.11.
[21] SAP 2000 advanced structural analysis program. (2009). Version 12.Berkeley, CA, USA: Computers and Structures, Inc. (CSI).
]22 [مبحث دهم مقررات ملی ساختمان، (1392)، طرح و اجرای ساختمان های فولادی، دفتر تدوین و ترویج مقررات ملی ساختمان [وزارت مسکن و شهرسازی، معاونت امور مسکن و ساختمان]، تهران: نشر توسعه ایران.
]23 [مبحث ششم مقررات ملی ساختمان، (1392)، بارهای وارد بر ساختمان، دفتر تدوین و ترویج مقررات ملی ساختمان [وزارت مسکن و شهرسازی]، تهران: نشر توسعه ایران.
[24] Richard, L., Hong, C. (2004). Explosion and fire Analysis of steel frames using fiber element approach. ASCE Journal of structural engıneering,991-1000.
]25 [مبحث بیست ویکم مقررات ملی ساختمان، (1391)، پدافند غیر عامل، دفتر مقررات ملی ساختمان: [وزارت مسکن و شهرسازی]، معاونت مسکن و ساختمان، تهران: نشر توسعه ایران.
 [26] Song B, Sezen H, Giriunas K.(2010), Experimental and analytical assessment on progressive collapse potential of actual steel frame buildings. In: ASCE structures conference and North American steel construction conference, Orlando, Florida; May 12–15.
[27] AISC. (1969). Manual of steel construction. 6th Edition. American Institute of Steel Construction (AISC), Chicago, IL.
[28] Song BI. (2010), Experimental and analytical assessment on the progressive potential of existing buildings  Master’s thesis. The Ohio State University; 2010.
[29] Shi, Y., Li, Z., Hao, H. (2010). A new method for progressive collapse analysis of RC frames under blast loading. Engineering Structures. pp.1691-1703.
[30] ATBLAST 2.0. (2000). Applied Research Associates.
[31] US Departments of the Army, Navy and Airforce. (1990).Technical Manual, Army TM5-1300, Navy NAVFAC P-397, Air Force AFR 88–22. Structures to resist the effects of accidental explosions. Washington. DC: US Department of Commerce,National Technical Information Service.
[32] Larcher, M. (2008). Pressure-time functions for the description of air blast waves. JRC Thechnical notes.
.