[1] Sedighi, M., Mahmoodi, M., (2013). “Residual Stresses Evaluation in Equal Channel Angular Rolled Al 5083 by IHD Technique: Investigation of Two Calculation Methods”., Material and Manufacturing Process, Vol. 28, No.1, pp. 85–90.
[2] Nam, C.Y., Han, J.H., Chung, Y.H., Shin, M.C., (2003) “Effect of precipitates on microstructural evolution of 7050 Al alloy sheet during equal channel angular rolling”. Material Science and Engineering A, Vol. 347, pp. 253–257.
[3] Chen, Z., Cheng, Y., Xia, W., (2007). “Effect of Equal-Channel Angular Rolling Pass on Microstructure and Properties of Magnesium Alloy Sheets”. Material and Manufacturing Process, Vol. 22, No. 1, pp. 51–56.
[4]Chung, Y.H., Park, J., Lee, K.H., (2006). “An Analysis of Accumulated Deformation in the Equal Channel Angular Rolling ( ECAR ) Process”. Metals and Materials International, Vol. 12, No. 4, pp. 289–292.
[5] Chung, Y.H., Park, J.W., Lee, K.H., (2007). “Controlling the Thickness Uniformity in Equal Channel Angular Rolling (ECAR) ”. Materials Science Forum, vol. 539–543, pp. 2872–2877.
[6] Cheng, Y.Q., Chen, Z.H., Xia, W.J., (2007). “Drawability of AZ31 magnesium alloy sheet produced by equal channel angular rolling at room temperature”. Materials Characterization, Vol. 58, No. 7, pp. 617–622.
[7] Cheng, Y.Q., Chen, Z.H., Xia, W.J., Zhou, T., (2008). “Improvement of Drawability at Room Temperature in AZ31 Magnesium Alloy Sheets Processed by Equal Channel Angular Rolling”. Journal of Materials Engineering and Performance, Vol. 17, No. 1, pp. 15–19.
[8] Hassani, F. Z., Ketabchi, M., (2011). “Nano grained AZ31 alloy achieved by equal channel angular rolling process”. Materials Science and Engineering A, Vol. 528, No. 21, pp. 6426–6431.
[9] Habibi, A., Ketabchi, M., Eskandarzadeh, M., (2011). “Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process”. Journal of Materials Processing Technology, Vol. 211, No. 6, pp. 1085–1090.
[10] Habibi, A., Ketabchi, M., (2012). “Enhanced properties of nano-grained pure copper by equal channel angular rolling and post-annealing”. Materials and Design, Vol. 34, pp. 483–487.
[11] Zhangtt, H., Huangt, S. H., (1995). “Applications of neural networks in manufacturing : a state-of-the-art survey . International Journal of Production Research, vol. 33, no. 3, pp. 705–728.
[12] Shi, X., Zeng, W., Sun, Y., Han, Y., Zhao, Y., Guo, P., (2015). “Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy”. Journal of Materials Engineering and Performance, Vol. 24, No. April, pp. 1754–1762.
]13[ کیا، س.م.، (1393). " شبکه های عصبی مصنوعی در MATLAB". ویرایش دوم، انتشارات دانشگاهی کیان.
[14]Sadati, S.H., kaklar, J.A., Gajar, R., (2011). “Application of Artificial Neural Networks in the Estimation of Mechanical Properties of Materials, Atrtificial Neural Networks-Industrial and control Engineering Applications”. Prof. K. Suzuki (Ed.), ISBN: 978-953-307-220-3, InTech.
[15] Djavanroodi, F., Omranpour, B., Sedighi, M., (2013). “Artificial Neural Network Modeling of ECAP Process”. Materials and Manufacturing Processes, Vol. 28, No. 3, pp. 276–281.
[16] Esmailzadeh, M., Aghaie Khafri, M., (2012). “Finite element and artificial neural network analysis of ECAP”. Computational Materials Science, Vol. 63, pp. 127–133.
[17]Chan, W.L., Fu, M.W., Lu, J., (2008). “An integrated FEM and ANN methodology for metal-formed product design, Engineering Applications of Artificial Intelligence”. Engineering Applications of Artificial Intelligence, Vol. 21, No. 8, pp. 1170–1181.
[18] Qin, Y.J., Pan, Q.L., He, Y.B., Li, W.B., Liu, X.Y., Fan, X., (2010). “Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of ZK60 Magnesium Alloy During Hot Compression”. Materials and Manufacturing Processes, Vol. 25, No. 7, pp. 539–545.
[19] Haghdadi, N., Khalesian, A.R., Abedi, H.R., (2013). “Materials and Design Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy”. Materials and Design, Vol. 49, pp. 386–391.
[20] Sheikh, H., Serajzadeh, S., (2008). “Estimation of flow stress behavior of AA5083 using artificial neural networks with regard to dynamic strain ageing effect”. Journal of Materials Processing Technology, Vol. 196, No. 1–3, pp. 115–119.
]21[ محمودی، م.، (1393). " تاثیر پارامترهای فرآیند نورد در کانالهای همسان زاویه دار بر تنشهای پسماند و خواص مکانیکی ساختاری آلیاژهای آلومینیوم". رساله دکترا، دانشگاه علم و صنعت ایران.
]22[ دادگر اصل، ی.، تاجداری، م.، مسلمی نائینی، ح.، داودی، ب.، عزیزی تفتی، ر.، پناهیزاده، و.، (1394). " پیش بینی مقدار گشتاور مورد نیاز در فرآیند شکل دهی غلتکی سرد مقاطع کانالی شکل با استفاده از شبکه های عصبی مصنوعی". مجله مهندسی مکانیک مدرس، دوره 99، شماره 9، ص ص. 1-6.
]23[شکوهفر، ع.، قربانپور، س.، نصیری خلیل آباد، س.، ذوالریاستین، ا.، جعفری، ع.، (1392). " پیش بینی سختی در نانو کامپوزیت های Al-Al2O3 با استفاده از شبکه عصبی مصنوعی با تغییر عوامل موثر در روش آلیاژسازی مکانیکی". مجله مهندسی مکانیک مدرس، دوره 13، شماره 13، ص ص.26-32.
[24] Dobatkin, S.V., Szpunar, J.A., Zhilyaev, A.P., Cho, J.Y., Kuznetsov, A.A., (2007). “Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper, Mater”. Materials Science and Engineering: A, Vol. 462, No. 1–2, pp. 132–138.
[25] Meyers, M.A., Mishra, A., Benson, D.J., (2006). “Mechanical properties of nanocrystalline materials”. Progress in Materials Science, Vol. 51, pp. 427–556.
[26] Lee, J., Suh, J., Ahn, J., (2003). “Work-Softening Behavior of the Ultrafine-Grained Al Alloy Processed by High-Strain-Rate , Dissimilar-Channel Angular Pressing”. Metallurgical and Materials Transactions A, Vol. 34, pp.625–632.