بهینه سازی فرآیند شکل دهی غلتکی مقاطع U شکل با روش ترکیبی رویه پاسخ و تابع مطلوبیت

نوع مقاله: پژوهشی

نویسندگان

دانشگاه ارومیه

چکیده

در فرآیند شکلدهی غلتکی، کنترل پارامترهای ورودی جهت حفظ کیفیت پروفیل نهایی ضروری میباشد. در این پژوهش به منظور بهینه سازی فرآیند شکلدهی غلتکی، از یک روش ترکیبی مبتنی بر شبیه سازی اجزای محدود استفاده شده است. نخست فرآیند با استفاده از روش اجزای محدود مدلسازی شده و صحت مدل ایجاد شده در مقایسه با نتایج تجربی تایید شده است. سپس با روش طراحی مرکب مرکزی، آزمایشهای لازم طراحی شده است. در این طراحی، قطر غلتک، فاصله ایستگاه، تعداد ایستگاه و سرعت خطی ورق به عنوان متغیرهای ورودی و حداکثر کرنش طولی پلاستیکی و دقت زاویه ای (بیانگر عکس برگشت فنری)، به عنوان توابع پاسخ در نظر گرفته شده اند. در ادامه با استفاده از روش رویه پاسخ و اجزای محدود، فرآیند مدلسازی شده و سپس مدل رویه پاسخ برای هر یک از توابع پاسخ بدست آمده است. در پایان با انجام بهینه سازی چند هدفه با استفاده از روش تابع مطلوبیت بر اساس مدل رویه پاسخ، نقطه بهینه پارامترهای ورودی بدست آمده و سپس نقطه بهینه مورد ارزیابی قرار گرفته است. نتایج نشان میدهد که روش رویه پاسخ با دقت مناسبی تاثیر پارامترهای ورودی بر توابع پاسخ را مدلسازی میکند. طبق این مدل افزایش فاصله ایستگاه ها، افزایش قطر غلتکها باعث کاهش کرنش طولی پلاستیکی بیشینه و افزایش سرعت خطی ورق باعث افزایش حداکثر کرنش طولی پلاستیکی میشود. کاهش فاصله و افزایش تعداد ایستگاه ها و افزایش قطر غلتکها منجر به افزایش دقت زاویه ای و افزایش سرعت خطی ورق باعث کاهش دقت زاویه ای میشود. همچنین نتایج بهینه سازی بیانگر افزایش دقت زاویه ای و کاهش حداکثر کرنش طولی پلاستیکی میباشد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of the roll forming process of U channels using a hybrid response surface and desirability function approach

نویسندگان [English]

  • Vahid Modanloo
  • Vali Alimirzaloo
  • Mohammadreza Ebrahimikhosroshahi
چکیده [English]

In the roll forming process, control of input parameters is essential in order to maintain the quality of the final profile. In this investigation, a new hybrid approach is used for optimization of the roll forming process. That is based on the finite element simulation. Firstly, the process was modeled using the finite element method and then verified with the experimental results. Then necessary experiments have been designed using the central composite design method. In this design roll diameter, distance and number of stands and linear velocity of the sheet are considered as input variables and maximum plastic longitudinal strain and angle precession (reverse of spring back) are considered as response functions. Then the response surface model of the objective functions was obtained using the response surface method based on the finite element outputs of the runs. Finally, optimum point of the input parameters has been obtained using the desirability function approach. Results show that the response surface method can model the effect of the input parameters on the objective functions precisely. According to this model, increasing of distance of the stands and roll diameter, lead to decreasing of maximum plastic longitudinal strain. Increasing the linear velocity of the sheet leads to decreasing the maximum plastic longitudinal strain. Decreasing distance and increasing number of stands cause to increase the angle precession and increasing the linear velocity of the blank leads to decreasing of the angle precession. Also optimization results represent increasing of the angle precession and decreasing of the maximum plastic longitudinal strain in comparison to conventional results.

کلیدواژه‌ها [English]

  • Roll Forming
  • Optimization
  • Response surface method
  • Finite element
  • Desirability function
 

[1] Halmos, G.T. (2006). “Roll Forming Handbook”. Published by Taylor & Francis Group.

[2] Chiang, K.F. (1984). “Cold roll forming”. ME thesis. University of Auckland.

[3] Zhu, S. D., Panton, S.M. (1996). “The effects of geometric variables in roll forming a channel section”. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 210, No. 2, pp. 127-134.

[4] Rossi. Barbara, B., Degee, H., Boman, R. (2013). “Numerical simulation of the roll forming of thin-walled sections and evaluation of corner strength enhancement”. Finite Elements in Analysis and Design, Vol. 72, pp. 13-20.

[5] Moen, C.D., Igusa, T., Schafer, B.W. (2008). “Prediction of the residual stresses and strains in cold-formed steel members”. Thin-walled Structer, Vol. 46, No. 11, pp. 1274-1289.

[6] Hong, S., Lee, S., Kim, N. (2001). “A parametric study on forming length in roll forming”. Journal of Materials Processing Technolog, Vol. 113, No. 1-3, pp. 774-778.

[7] Lindgren, M. (2007). “Cold roll forming of a U-channel made of high strength steel”. Journal of Materials Processing Technology, Vol. 186, pp. 77-81.

]8[ پناهی زاده رحیملو، و.، مسلمی نائینی، ح.، لیاقت، غ.ح.، سلمانی تهرانی، م. (1392). "بررسی عددی و تجربی اثر مدل­های سخت­شوندگی روی پدیده برگشت فنری در فرآیند شکل­دهی غلتکی سرد مقاطع U شکل متقارن". نشریه مهندسی مکانیک مدرس، دوره 13، شماره 6، صفحات 74-82.

]9[ محمدی، م.، مسلمی نائینی، ح.، کسائی، م.م.، سلمانی تهرانی، م.، عباس زاده، ب. (1393). "بررسی عیب تابیدگی کف پروفیل­های با سطح مقطع متغیر در فرآیند شکل­دهی غلتکی انعطاف­پذیر". نشریه مهندسی مکانیک مدرس، دوره 14، شماره 6، صفحات 72-80.

]10[ افتخاری شهری، س.ا.، خلیلی، خ.، احمدی بروغنی، س.ی. (1392). "بهینه سازی منحنی فشار جابجایی در فرآیند هیدروفرمینگ لوله با استفاده از روش رویه پاسخ چند مرحله ای". نشریه مهندسی مکانیک مدرس، دوره 13، شماره 13- فوق العاده، صفحات 176-187.

]11[ لطفی، ا.ح.، نوروزی، س. (1393) "بررسی خواص ریزساختاری و مکانیکی آلیاژ آلومینیم 6T-7075  در جوشکاری اصطکاکی اغتشاشی با بکارگیری طراحی آزمایش به شیوه ترکیب مرکزی". نشریه مهندسی مکانیک مدرس، دوره 14، شماره 3، صفحات 17-26.

[12] Bhattacharyya, D., Smith, P., Yee, C. H., Collins, I.F. (1984). “The development of longitudinal strain in cold roll forming and its influence on product straightness”. First international conf. on tech. of plasticity, Tokyo, The japan Soc. For Tech of plasticity. 1:422-427.

[13] McClure, C.K., Li, H. (1995). “Roll forming simulation using finite element analysis”. Manufacturing review, Vol. 8, No. 2, pp. 114–122.

[14] Montgomery, D.C. (1997). “Design and analysis of experiments”. 4th edition, Wiley.

[15] Alimirzaloo, V. (2011). “Optimization of the Final Forging Process of the Compressor Blade of an Aerial Motor”. Ph.D. thesis, Amirkabir University of Technology.

[16] Deb, K. (2001). “Multi-objective optimization using Evolutionary Algorithms”. Wiley.