شبیه سازی ترمودینامیکی یک سیستم هیبریدی توربین باد و پیل سوختی با کاربرد در یک سیستم مستقل از شبکه

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشگاه صنعتی مالک اشتر

2 تهران - دانشگاه آزاد اسلامی - واحد علوم و تحقیقات

چکیده

هدف از ارائه این مقاله شبیه‌سازی ترمودینامیکی یک سیستم هیبریدی توربین باد و پیل‌سوختی پلیمری مستقل از شبکه برای به‌کارگیری در چهار شهر تهران، مشهد، منجیل و زابل می‌باشد. با توجه به اهمیت پیل‌سوختی در کاهش نوسانات توان خروجی توربین بادی و همچنین انعطاف‌پذیری سیستم هیبریدی در مقابل تغییرات شرایط جوی و نوسانات توان مصرفی، از چند پیل‌سوختی و الکترولایزر با توان مناسب جهت به‌کارگیری در سیستم هیبریدی استفاده شده است. هدف اولیه این پژوهش این است که توربین بادی تا چه حدی می-تواند پاسخگوی توان مصرفی واحدهای مسکونی باشد و در صورت عدم تامین توان لازم برای تعداد واحدهای بالاتر چند پیل‌سوختی و الکترولایزر مورد نیاز است. نتایج بیانگر آن است که سیستم هیبریدی برای شهر تهران، برای تعداد واحدهای کم قادر به تامین توان مصرفی می‌باشد، این در حالیست که برای شهر منجیل و زابل تعداد واحدهای تحت پوشش به صورت چشمگیری افزایش می‌یابد. همچنین به دلیل سرعت پایین باد در شهر مشهد، سیستم هیبریدی به هیچ عنوان پاسخگوی توان مصرفی واحدهای معرفی شده نمی‌باشد. نتایج بیانگر این مساله است که با افزایش تعداد واحدهای مسکونی، سهم تامین توان توسط پیل‌سوختی افزایش می‌یابد. سیستم هیبریدی پیشنهادی برای شهرهای تهران، منجیل و زابل به ترتیب تا 6، 68 و 34 واحد مسکونی قادر به تامین توان مصرفی بوده و برای این تعداد واحد مسکونی سهم پیل‌سوختی به ترتیب 10/2، 11/3 و 8/31 درصد از توان تولیدی می‌باشد. همچنین هزینه راه‌اندازی سیستم هیبریدی معرفی‌شده در مقایسه با نیروگاه‌های سیکل ترکیبی با سوخت فسیلی تقریبا یکسان می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermodynamic simulation of a wind turbine-fuel cell hybrid system with application in a distributed generation system

نویسنده [English]

  • Reza Harbi 2
2 azad university
چکیده [English]

The aim of this article is to design wind turbine PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area for Tehran, Mashhad, Manjil, and Zabol. According to importance of fuel cell role in output power fluctuation reduction of wind turbine and flexibility of hybrid system against changes of atmospheric conditions and fluctuations of consumption power, fuel cell and electrolysis with suitable power is selected in different numbers. In this research study, we have attempted to find out up to how many residential units, a wind turbine is able to meet the consumption power, and up to how many electrolysis and fuel cells are required for higher numbers of residential units. Providing consumption hydrogen by electrolysis and consumption power by hybrid system are design conditions of the system. Results indicate that the hybrid system is able to supply electrical energy for a few number of residential units in Tehran however, this number increases dramatically in Manjil and Zabol with 6,68 ,and 34 residential units respectively. In addition, hybrid system in Mashhad, due to poor wind speed, is not capable of meeting the demand. By increasing number of residential units, share of fuel cell increases in hybrid system. Also result shows that the capital cost of the hybrid system is approximately equal to the capital cost of combined-cycle power plant.

کلیدواژه‌ها [English]

  • Hybrid System
  • Residential Units
  • wind turbine
  • fuel cell
  • Electrolysis
 
]1[  جهانگیری، م.، صداقت، ا.، (1391). " طراحی سیستم ترکیبی پنل خورشیدی- توربین بادی- سیستم هیدروژن مطالعه موردی: الیگودرز". ششمین همایش ملی و نمایشگاه تخصصی مهندسی محیط زیست، تهران.
]2[  احمدی، س.، میرقائد، م.، روشن­دل، ر. (1391). "مدل­سازی سیستم ترکیبی توربین بادی- پیل­سوختی و سهم پیل­سوختی در تامین تقاضای الکتریکی در یک منطقه نمونه". نشریه علمی پژوهشی مدیریت انرژی، سال 2، شماره 3. صفحه 19-21.
[3] Brouwer, J., (2014). “Hybrid Gas Turbine Fuel Cell Systems”. National Fuel Cell Research Center, University of California, See also URL http://www.nfcrc.uci.edu.  Accessed June 2, 2014.
[4] Greiner, C., Korpas, M., Holen, A. (2007). “A Norwegian case study on the production of hydrogen from wind power”. International Journal of Hydrogen Energy, Vol. 32, No. 10, pp. 1500-1507.
[5] Chavez-Ramirez, A., Vollejo-Becerra, V., Cruz, J., Ornelas, R., Munoz-Guerrero, R., Arriago, l. (2013). “A hybrid power plant (solar/wind/hydrogen) model based in artifi cial intel-ligence for a remote-housing application in Mexico”. International Journal of Hydrogen Energy, Vol. 38, No. 36, pp. 2641-2655.
[6] Ranjbar, M., Mohammadian, M., Esmaili, S. (2014). “Economic analysis of hybrid system consists of fuel cell and wind based CHP system for supplying grid-parallel residential load”. Energy and Buildings,Vol. 68, pp. 476-487.
[7] Rahimi, S., Meratizaman, M., Monadizadeh, M., Amidpour, M. (2014). “Techno-economic analysis of wind turbine–PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area”. Energy, Vol. 67, pp. 381-396.
[8] Andaloro, L., Arista, A., Agnello, G., Napoli, G., Sergi, F., Antonucci, V. (2017). “Study and design  of a hybrid electric vehicle (Lithium Batteries-Pem FC)”. Hydrogen Energy, Vol. 52, pp. 1-19.
[9] Pramod, J. (2010). “Wind  energy  engineering”.  McGraw-Hill  Professional.
[10] Carrillo, C., Montano, A., Cidras, J., Diaz-Dorado, E., (2013). “Review of power curve modeling for wind turbines”. Renewable and Sustainable Energy Reviews, Vol. 21, pp. 572-581.
[11] Ahmadi, P., Dincer, I., Rosen, M., (2013). “Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis”. International Journal of Hydrogen Energy, Vol. 38, No. 4, pp. 1795-1805.
[12] Awasthi, A., Scott, K., Basu, S., (2011). “Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production”. International Journal of Hydrogen Energy, Vol. 36, No. 22, pp. 14779-14786.
[13] Esmaili, P., Dincer, I., Naterer, G. (2012). “Energy and exergy analyses of electrolytic hydrogen production with molybdenum-oxo catalysts”. International Journal of Hydrogen Energy, Vol. 37, No. 9, pp. 7365-7372.
[14]Miansari, Me., Sadeghi, K., Amidpour, M., Alizadeh, E., Miansari, Mo. (2009). “Experimental and thermodynamic approach on proton exchange membrane fuel cell performance”. Journal of Power Sources, Vol. 190, pp. 356-361.
[15] Fuel cell products, Accessed 20 June 2014; http://www.ballard.com/fuel-cell-products.
[16] Hydrogen and fuel cell research, Accessed 22 June 2014; http://www.nrel.gov/hydrogen.
[17] Leading clean energy innovation, Accessed 18 April 2015; http://www.nrel.gov/analysis/re_futures.
[18] http://www.irimo.ir/, Accessed June 2, 2014.