[1] Ahmadi, Nima, Sajad Rezazadeh, and Iraj Mirzaee. "Study the Effect of Various Operating Parameters of Proton Exchange Membrane." Periodica Polytechnica Chemical Engineering (2015).
[2]T.V. Nguyen, Modeling two-phase flow in the porous electrodes of proton exchange membrane fuel cells using the interdigitated flow fields, Presented at the 195th Meeting of Electrochemical Society, 4–7 May (1999) Seattle.
[4] M. Grujicic, K.M. Chittajallu, Design and optimization of polymer electrolyte membrane (PEM) fuel cells, Applied Surface Science 227 (2004) 56–72.
[5] Xing, Xiu Qing, et al. "Optimization of assembly clamping pressure on performance of proton-exchange membrane fuel cells." Journal of Power Sources 195.1 (2010): 62-68.
[6] Chang, W. R., et al. "Effect of clamping pressure on the performance of a PEM fuel cell." Journal of Power Sources 166.1 (2007): 149-154.
[7] Moreno, Nayibe Guerrero, et al. "Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost." Renewable and Sustainable Energy Reviews 52 (2015): 897-906.
[8]J.C. Amphlett, R.M. Baumert, R.F. Mann, B.A. Peppley, P.R.Roberge, T.J. Harris, Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. I. Mechanistic model development J. Electrochem. Soc. 142 (1995) 9-15.
[9] Werner, Claudia, Lucas Busemeyer, and Josef Kallo. "The impact of operating parameters and system architecture on the water management of a multifunctional PEMFC system." International Journal of Hydrogen Energy (2015).
[10] Kwon, Oh-Jung, et al. "A study of numerical analysis for PEMFC using a multiphysics program and statistical method." International Journal of Hydrogen Energy (2015).
[11] Lee, Dongyoung, et al. "Gasket-integrated carbon/silicone elastomer composite bipolar plate for high-temperature PEMFC." Composite Structures 128 (2015): 284-290.
[12] F.A. Uribe, S. Gottesfeld, T.A. Zawodzinski, Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance. J. Electrochem. Soc.149 (2002) A293-A296.
[13] E.A. Ticianelli, C.R. Derouin, S. Srinivasan, Localization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells. J. Electro anal. Chem. 251 (1988) 275–295.
[14] K.Z. Yao, K. Karan, K.B. McAuley, P. Oosthuizen, B. Peppley, T. Xie, A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells, Fuel Cells 4 (1/2) (2004) 3–29.
[15] D. Natarajan, T.V. Nguyen, A two-dimensional, two-phase, multi component, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors, J. Electrochem.Soc. 148 (12) (2001) A1324–A1335.
[16] G. Lin, T.V. Nguyen, A two-dimensional two-phase model of a PEM fuel cell, J. Electrochem. Soc. 153 (2006) A372–A382.
[17] K.W. Lum, J.J. McGuirk, Three-dimensional model of a complete polymer electrolyte membrane fuel cell – model formulation, validation and parametric studies, J. Power Source. 143 (2005) 103–124.
[18] D.H. Ahmed, H.J. Sung, Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density. J. Power Source. 162 (2006) 327–339.
[19]S.Majidifar,I.Mirzaei,S.Rezazadeh,P.Mohajeri,H.Oryani ,Effect of Gas Channel Geometry on Performance of PEM Fuel Cells. AJBAS, 5(5) (2011) 943-954.
[20] Nader Pourmahmoud, Sajad Rezazadeh, Iraj Mirzaee, vahid heidarpoor, Three-dimensional numerical analysis of proton exchange membrane fuel cell. JMST.25 (10) (2011) 2665~2673.
[21] N. Ahmadi, N. Pourmahmoud, I. Mirzaee, S. Rezazadeh, Three-Dimensional Computational Fluid Dynamic Study of Effect of Different Channel and Shoulder Geometries on Cell Performance. AJBAS, 5(12): 541-556, 2011.
[22] N. Ahmadi, S. Rezazadeh, I. Mirzaee, N. Pourmahmoud, Three-dimensional computational fluid dynamic analysis of the conventional PEM fuel cell and investigation of prominent gas diffusion layers effect. JMST, 26 (8) (2012) 1-11.
[23] D.H. Ahmed, H.J. Sung , Design of a deflected membrane electrode assembly for PEMFCs. Int. J. Heat and Mass Transfer 51 (2008) 5443–5453.
[24] V. Garau, H. Liu, and S. Kakac,Two-dimensional model for proton exchange membrane fuel cells, AIChE J. 44(11) (1998) 2410-2422.
[25] R.E. Meredith and C.W. Tobias, in “Advances in Electrochemistry and Electrochemical Engineering 2”, (Tobias,C.W., ed., Interscience Publishers, New York, 1960).
[26] R. Byron Bird, Warren E. Stewart, and Edwin N.Lightfoot, in “Transport Phenomena” (John Wiley & Sons, Inc, 1960)
[27] T.E. Springer, T.A. Zawodzinski, and S. Gottesfeld, Polymer Electrolyte Fuel Cell Model J.Electrochem. Soc. 138 (1991) 2334-2342.
[28]A.A. Kuklikovsky, Quasi-3D Modeling of Water Transport in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. 150(11) (2003) A1432-A1439.
[29]R.E. Meredith and C.W. Tobias, in “Advances in Electrochemistry and Electrochemical Engineering 2”, (Tobias, C.W., ed., Interscience Publishers, New York, 1960).
[30] S.W. Yeo and A. Eisenberg, Physical properties and supermolecular structure of perfluorinated ion-containing (nafion) polymers, J. Appl. Polym. Sci. 21 (1977) 875-898.
[31] T. E. Springer, T. A. Zawodinski, and S. Gottesfeld, Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc., 136, (1991) 2334-2342.
[32L. Wang, A. Husar, T. Zhou, and H. Liu, A parameteric study of PEM fuel cell performances, J. Hydrog. Energy, 28 (2003) 1263-1272.