[1] Choi, S.U.S. (1995). “Enhancing thermal conductivity of fluids with nanoparticles”. ASME-Publications-Fed, Vol. 231, pp. 99-106.
[2] Chandrasekar, M., Suresh, S., Chandra Bose, A. (2010). “Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid”. Experimental Thermal and fluid Science, Vol. 34, pp. 210–216.
[3] Liu, M.S., Lin, M.C.C., Wang, C.C. (2011). “Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system”. Nanoscale Research Letter, Vol. 6, pp. 297.
[4] Harish, S., Ishikawa, K., Einarsson, E., Aikawa, S., Chiashi, S., Shiomi, J., Maruyama, S. (2012). “Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions”. International Journal of Heat and Mass Transfer, Vol. 55, pp. 3885–3890.
[5] Reddy, M.C.S., Vasudeva, Rao, V. (2013) “Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2nanofluids”. International Communications in Heat and Mass Transfer, Vol. 46, pp.31–36.
[6] Sundar, L.S., Singh, M.K., Sousa, A.C.M. (2013) “Investigation of thermal conductivity and viscosity of Fe3O4nanofluid for heat transfer applications”. International Communications in Heat and Mass Transfer, Vol. 44, pp. 7–14.
[7] Jeong, J., Li, C., Kwon, Y., Lee, J., Hyung Kim, S., Yun, R. (2013). “Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids”. International journal of Refrigeration, Vol. 36, pp. 2233-2224.
[8] Hachey, M.A., Nguyen, C.T., Galanis, N., Pop, C.V. (2014). “Experimental investigation of Al2O3 nanofluids thermal properties and rheology – Effects of transient and steady-state heat exposure”. International Journal of Thermal Sciences, Vol. 76, pp. 155-167.
[9] Pang, C., Lee, J.W., Kang, Y.T. (2015). “Review on combined heat and mass transfer characteristics in nanofluids”. International Journal of Thermal Sciences, Vol. 87, pp. 49-67.
[10] Hemmat Esfe, M., Afrand, M., Karimipour, A., Yan, W.-M., Sina, N. (2015). “An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol”. International Communications in Heat and Mass Transfer, Vol. 67, pp. 173-175.
[11] Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.S. (2005). “Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement”. Applied Physics Letter, Vol. 87, pp. 153107.
[12] Li, C.H., Peterson, G.P. (2006). “Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)”. Journal of Applied Physics, Vol. 99, pp. 084314-1-084314-8.
[13] Vajjha, R.S., Das, D.K. (2009). “Measurement of thermal conductivity of three nanofluids and development of new correlations”. International Journal of Heat and Mass Transfer, Vol. 52, pp. 4675–4682.
[14] Duangthongsuk, W., Wongwises, S. (2009). “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids”. Experimental Thermal and Fluid Science, Vol. 33, pp. 706-714.
[15] Teng, Tun-Ping, Hung, Yi-Hsuan, Teng, Tun-Chien, Mo, Huai-En, Hsu, How-Gao. (2010). “The effect of alumina/water nanofluid particle size on thermal conductivity”. Applied Thermal Engineering, Vol. 30, pp. 2213-2218.
[16] Ghanbarpour, M., Bitaraf Haghigi, E., Khodabandeh, R. (2014). “Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid”. Experimental Thermal and Fluid Science, Vol. 53, pp. 227–235.
[17] Toghraie, D., Chaharsoghi, V.A., Afrand, M. (2016). “Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid”. Journal of Thermal Analysis and Calorimetry, Vol. 125, pp. 527-535.
[18] Soltanimehr, M., Afrand, M. (2016). “Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems”. Applied Thermal Engineering, Vol. 105, pp. 716-723.
[19] Sarbolookzadeh Harandi, S., Karimipour, A., Afrand, M., Akbari, M., D'Orazio, A. (2016). “An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration”. International Communications in Heat and Mass Transfer, Vol. 76, pp. 171-177.
[20] Hemmat Esfe, M., Saedodin, S., Mahian, O., Wongwises, S. (2014). “Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids”. International Communications in Heat and Mass Transfer, Vol. 58, pp. 176–183.
[21] Papari, M.M., Yousefi, F., Moghadasi, J., Karimi, H., Campo, A. (2011). “Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks”. International Journal of Thermal Sciences, Vol. 50, pp. 44–52.
[22] Hojjat, M., Etemad, S. Gh., Bagheri, R., Thibault, J. (2011). “Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network”. International Journal of Heat and Mass Transfer, Vol. 54, pp. 1017–1023.
[23] Longo, G. A., Zilio, C., Ceseracciu, E., Reggiani, M. (2012) “ Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids”. Nano Energy, Vol. 1, pp. 290–296.
[24] Hemmat Esfe, M., Saedodin, S., Bahiraei, M., Toghraie, D., Mahian, O., Wongwises, S. (2014). “Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network”. Journal of Thermal Analysis and Calorimetry, Vol. 118, pp. 287–294.
[25] Afrand, M., Toghraie, D., Sina, N. (2016). “Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: Development of a new correlation and modeled by artificial neural network”. International Communications in Heat and Mass Transfer, Vol. 75, pp. 262-269.