مدل‌سازی و بهینه سازی نیروگاه دودکش خورشیدی با الگوریتم‌های SA و PSO

نوع مقاله : مقاله مکانیک

نویسندگان

1 پردیس علوم و فناوری‌های نوین، دانشگاه سمنان

2 دانشکده مهندسی مکانیک، دانشگاه سمنان

چکیده

در این مقاله، یک مدل ریاضی برای موازنه‌ی انرژی و تولید توان در یک نیروگاه دودکش خورشیدی توسعه داده شده است. با استفاده از این مدل، میزان توان تولیدی یک نیروگاه دودکش خورشیدی، بررسی شده است. ابتدا معادلات حاکم بر نیروگاه نوشته شده، سپس مجموعه معادلات و روابط کمکی مرتبط، با استفاده از الگوریتمهای تبرید شبیه‌سازی شده و بهینه‌سازی ازدحام ذرات حل می‌گردد. برای بررسی صحت و دقت مدل از داده‌های موجود در مقاله‌ی مرجع استفاده شده است. نتایج این مطالعه نشان می‌دهد، مقدار راندمان حرارتی در نیروگاه دودکش خورشیدی، عددی کوچک و نسبت توان تولیدی به کل انرژی ورودی برای داده‌ها‌ی مرجع تقریباً برابر 6/0 درصد می‌باشد. بیشترین انتقال حرارت در نیروگاه بین دو سطح زمین و سقف آن رخ می‌دهد. با تغییر در ابعاد هندسی نیروگاه، توان تغییرات قابل توجهی دارد. با توجه به موازنه‌ی انرژی، افزایش حرارت ورودی باعث بالا رفتن دمای سطوح نیروگاه می‌گردد، که این امر اتلاف انرژی را در پی دارد. در روش حل با استفاده از الگوریتمهای بهینه‌سازی، با افزایش تعداد تکرار در الگوریتم، دقت نتایج نیز بهبود می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Mathematical modeling and optimization of solar chimney power plant by SA and PSO algorithm

نویسندگان [English]

  • Seyed Hossein Fallah 1
  • Mohammad Sadegh Valipour 2
1
2 School of Mechanical Engineering, Semnan University
چکیده [English]

In this paper, a mathematical model for balancing energy and power generation in a solar chimney power plant has been developed. Using this mathematical model, the amount of power produced by a solar chimney power plant, have been investigated. The governing equations written power plants, Then Equations, using simulated annealing algorithm and particle swarm optimization were solved. To validate the model, the data contained in the reference paper is used. The results of this study show, The thermal efficiency of the solar chimney power plant, a small number. Proportion Power produced to the total energy for the reference data, approximately 0.6 percent. Most heat transfer occurs between the ground and the roof of the plant. By changing the geometry of power plant, Power, significant changes. According to energy balance, heat input is more increased temperature surfaces, As a result, waste of energy. In this method, using optimization algorithms, Speed solution Increases. And by increasing the number of Iteration the algorithm, Accuracy of the results will improve.

کلیدواژه‌ها [English]

  • Solar chimney power plant
  • Mathematical modeling
  • Energy balance
  • Simulated annealing algorithm
  • particle swarm optimization algorithm
 
     [1]      Guo, P., Li, J., Wang, Y., Liu, Y. (2013). ″Numerical analysis of the optimal turbine pressure drop ratio in a solar chimney power plant″. Solar Energy, Vol. 98, pp. 42-48.
     [2]      Guo, P., Li, J., Wang, Y., Wang, Y. (2016). ″Evaluation of the optimal turbine pressure drop ratio for a solar chimney power plant″. Energy Conversion and Management, Vol. 108, pp. 14-22.
     [3]      Guo, P., Wang, Y., Li, J., Wang, Y. (2016). ″Thermodynamic analysis of a solar chimney power plant system with soil heat storage″. Applied Thermal Engineering, Vol. 100, pp. 1076-1084.
     [4]      Patel, S.K., Prasad, D., Ahmed, M.R. (2014). ″Computational studies on the effect of geome- tric parameters on the performance of a solar chimney power plant″. Energy Conversion and Management, Vol. 77, pp. 424-431.
     [5]      Djimli, S., Chaker, A. (2014). ″Numerical Study of the Solar Chimney Power Plant Performance in the Region of M’Sila-Algeria″. Power (W), Vol. 1000, No. 12.
     [6]      Cottam, P.J., Duffour, P., Lindstrand, P., Fromme, P. (2016). ″Effect of canopy profile on solar thermal chimney performance″. Solar Energy, Vol. 129, pp. 286-296.
     [7]      Asnaghi, A., Ladjevardi, S.M. (2012). ″Solar chimney power plant performance in Iran″. Renewable and Sustainable Energy Reviews, Vol. 16, No. 5, pp. 3383-3390.
     [8]      Maia, C.B., Castro Silva, J.O., Cabezas-Gómez, L., Hanriot, S.M., Ferreira, A.G. (2013). ″Energy and exergy analysis of the airflow inside a solar chimney″.  Renewable and Sustainable Energy Reviews, Vol. 27, pp. 350-361.
     [9]      Rashid, F. L., Hussein, E.Q., Azziz, H.N. (2015). ″Design of solar chimney with spherical collector for electricity production″. pp. 101-109.
 [10]      Nasirivatan, S., Kasaeian, A., Ghalamchi, M., Ghalamchi, M. (2015). ″Performance optimization of solar chimney power plant using electric/corona wind″. Journal of Electrostatics, Vol. 78, pp. 22-30.
 [11]      Kirstein, C.F., Backstrom, T.W.V. (2006). ″Flow through a solar chimney power plant collector-to-chimney transition section″. Journal Solar Energy Engineering, Vol. 128, No. 3, pp. 312-317.
 [12]      Koonsrisuk, A., Chitsomboon, T. (2007). ″Dynamic similarity in solar chimney modeling″. S- olar Energy, Vol. 81, No. 12, pp. 1439-1446.
 [13]      Fluri, T.P., VonBackstrom, T.W. (2008). ″Comparison of modelling approaches and layouts for solar chimney turbines″. Solar Energy, Vol. 82, No. 3, pp. 46-239.
 [14]      Fluri, T.P., VonBackstrom, T.W. (2008). ″Performance analysis of the power conversion unit of a solar chimney power plant″. Solar Energy, Vol. 82, No. 11, pp. 999-1008.
 [15]      Koonsrisuk, A., Chitsomboon, T. (2013). ″Effects of flow area changes on the potential of solar chimney power plants″. Energy, Vol. 51, pp. 400-406.
 [16]      Ming, T., Wang, X., Richter, R.K., Liu, W., Wu, T., Pan, Y. (2012). ″Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system″. Renewable and Sustainable Energy Reviews, Vol. 16, No. 8, pp. 5567-5583.
 [17]      Ming, T., Liu, W., Pan, Y., Xu, G. (2008). ″Numerical analysis of flow and heat transfer cha- racteristics in solar chimney power plants with energy storage layer″. Energy Conversion and Management, Vol. 49, No. 10, pp. 2872-2879.
 [18]      Ming, T., Liu, W., Xu, G., Xiong, Y., Guan, X., Pan, Y. (2008). ″Numerical simulation of the solar chimney power plant systems coupled with turbine″. Renewable Energy, Vol. 33, No. 5, pp. 897-905
 [19]      Zhou, X., Yang, J., Xiao, B., Hou, G., Xing, F. (2009). ″Analysis of chimney height for solar chimney power plant″. Applied Thermal Engineering, Vol. 29, No. 1, pp. 178-185.
 [20]      Li, J.Y., Guo, P.H., Wang, Y. (2012). ″Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines″. Renewable Energy, Vol. 47, pp. 21-28.
 [21]      Von Backström, T.W., Gannon, A.J. (2004). ″Solar chimney turbine characteristics″. Solar Energy, Vol. 76, No. 1, pp. 235-241.
 [22]      Thakre, S.B., Bhuyar, L.B., S. Dahake, V., Wankhade, P. (2013). ″Mathematical modeling of temperature lapse rate in solar chimney power plant″. Global Journal of Researches in Engineering Mechanical and Mechanics Engineering, Vol. 13, No. 1, pp. 1417-1423.
 [23]      Petela, R. (2009). ″Thermodynamic study of a simplified model of the solar chimney power plant″, Solar Energy, Vol. 83, No. 1, pp. 94-107.
[24]      ویکی پدیا (خرداد 1395)، الگوریتم_تبرید_شبیه‌سازی_شدهhttps://fa.wikipedia.org/wiki/.
[25]      ویکی پدیا (خرداد 1395)، روش_بهینه‌سازی_ازدحام_ذراتhttps://fa.wikipedia.org/wiki/.
 [26]      Pastohr, H., Kornandt, O., Gurlebeck, K. (2004). ″Numerical and analytical calculations of the temperature and flow field in the upwind power plant″. Int. J. Energy Res. 28, 495–510.
 [27]      Von Backstrom, T.W., Fluri, T.P., (2006). ″Maximum fluid power condition in solar chimney power plants – An analytical approach″. Solar Energy, Vol. 80, No. 11, pp. 1417-1423.
 [28]      Koonsrisuk, A., Chitsomboon, T. (2013). ″Mathematical modeling of solar chimney power plants″. Energy, Vol. 51, pp. 314-322.
 [29]      Petela, R. (2008). ″Influence of gravity on the exergy of substance″. Int. J. Exergy, Vol. 5, No. 1, pp. 1-17.