ارائه یک مدل مبتنی بر آزمایش جهت استخراج فرکانس‌های طبیعی موثر بر نویز صوتی در موتور سنکرون

نوع مقاله : مقاله برق

نویسندگان

دانشگاه صنعتی شاهرود

چکیده

تحلیل و بررسی نویز صوتی ماشین‌های الکتریکی به دلیل کاربرد‌های گسترده و ویژه‌ای که دارند از اهمیت زیادی برخوردار است. خطای روش‌های تحلیلی و عددی در پیش‌بینی و محاسبه دقیق دامنه نویز صوتی منتشر شده از ماشین‌های الکتریکی بویژه در فرکانس‌های بالا غیرقابل چشم­پوشی است و برای بررسی و تحلیل دقیق نویز صوتی منتشر شده از ماشین‌های الکتریکی نیاز به اندازه‌گیری عملی و دقیق نویز صوتی است. در این مقاله، یک مدل کارآمد و مبتنی بر آزمایش جهت تحلیل نویز صوتی منتشر شده از یک موتور سنکرون، شناسایی منابع نویز و همچنین استخراج فرکانس‌های طبیعی طراحی شده است. ابتدا سرعت مکانیکی موتور سنکرون توسط VFD از صفر شروع به افزایش می‌کند و در طول زمان شتاب‌گیری موتورسنکرون نویز صوتی منتشر شده از آن توسط "میکروفن اندازه‌گیری" و در شرایط استاندارد اندازه‌گیری می‌شود. سپس با استفاده از ابزار پردازش تصویر نتایج حاصل از اندازه‌گیری مورد پردازش قرار گرفته و منابع نویز موتور سنکرون و همچنین فرکانس‌های طبیعی آن تشخیص داده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Experimental Model for Extraction of the Natural Frequencies influencing on the Acoustic Noise of Synchronous Motors

نویسندگان [English]

  • Mohammadreza Baghayipour
  • Ahmad Darabi
  • Ali Dastfan
چکیده [English]

Acoustic noise analysis of electrical machines is of special interest due to their numerous and miscellaneous applications. The analytical and numerical approaches for prediction and calculation of acoustic noise radiated from electrical machines usually yield considerable errors. Therefore, the accurate investigation of acoustic noise in electrical machines necessitates exact experimental noise measurements. In this paper, an efficient experimental model is developed to analyze the acoustic noise radiated from a synchronous motor, identify the noise sources, and extract the significant natural frequencies. At first, the motor mechanical speed is raised from zero up to a maximum value by use of a Variable Frequency Drive (VFD). During the motor acceleration period, its radiated acoustic noise is measured by means of a "measurement microphone" in a standard test condition. The measurement results are then analyzed via developing and utilizing an Image Processing Algorithm, and thereby, the prominent noise sources of the synchronous motor and its significant natural frequencies are finally identified.

کلیدواژه‌ها [English]

  • Synchronous Motor
  • Acoustic Noise Measurement
  • Noise Sources
  • Vibrational Natural Frequencies
[1]     Graham, Q., Beckwith, S., Milliken, F. H. (1931). “Magnetic noise in synchronous machines”. AIEE Trans., pp. 1056–1062.
[2]     Alger, P. L. (1954). “The Magnetic Noise of Poly-phase Induction Motors”. IEEE Trans. Power App. Syst., Vol. 73, pp. 118-125.
[3]     Morill, W. J. (1940). "Harmonic Theory of Noise in Induction Motors". IEEE Trans. Commun., Vol. 59, pp 474 – 480.
[4]     Heller, B., Hamata, V. (1977). "Harmonic Field Effects in Induction Machines". 1st Ed, New York, NY, USA: Elsevier Science.
[5]     Timar, P. L., Fazekas, A., Kiss, J., Miklos, A., Yang, S. J. (1989). "Noise and Vibration of Electrical Machines". New York, NY, USA: Elsevier Science.
[6]     Nau, S. L., Mello, H. G. G. (2000). "Acoustic Noise In Induction Motors: Causes And Solutions". Conf. 47th Annu Ind. App. Society, Petroleum and Chemical Industry, San Antonio, TX, pp. 253- 263.
[7]     Kaku, B., Miyashita, I., Sone, S. (1999). "A Novel Prediction Method of Acoustic Magnetic Noise Based on Induction Motor’s NHCC Function". IEEE Trans. Ind. Electron., Vol. 46, pp 398- 406.
[8]     Vijayraghavan, P., Krishnan, R. (1999). "Noise in Electric Machines: A Review". IEEE Trans. Ind. Appl., Vol. 35, pp 1007- 1013.
[9]     Gieras, J. F., Wang, C., Lai, J. C. (2006). "Noise of Polyphase Electric Motors". 1st Ed, M. O. Thurston, Ed. Boca Raton: CRC Press (Taylor & Francis Group).
[10] Rezig, A., Mekideche, M. R., Ikhlef, N. (2007). "Effect Of Rotor Eccentricity On Magnetic Noise Generation In Induction Motors". Journal of Electrical Engineering, pp 1-6.
[11] Ozelgin, I. (2008). “Analysis of magnetic flux density for air gap eccentricity and bearing faults”. Int. J. Syst. Appl. Eng., Vol. 2, pp. 162-169.
[12] Li, V., Jiang, X., Xia, J., Li, S., Zhang, F. (20l3). "Research  of  Vibration  and  Noise  Source Identification Method of Surface-mounted". Int. Conf. on Electrical Machines and  Systems, Busan, pp 42- 45.
[13] Grabner, C. (2010). “Variable Speed Drive Application Based Acoustic Noise Reduction Strategy”. Proc. World Congress on Engineering and Computer Science (WCECS), San Francisco, USA, pp. 1–6.
[14] Lo, W. C. (2000). "Acoustic noise radiated by PWM-controllel induction machine drives". IEEE Trans. Ind. Electron, Vol. 47, pp. 880-889.
[15] Zhu, Z. Q., Xu, L., Howe, D. (2001). "Influence of the fan cowl on the acoustic noise radiated from PWM controlled induction machines". IEEE International Electric Machines and Drives Conference (IEMDC 2001), IEEE.
[16] Tischmacher, H., Tsoumas, I. P., Eichinger, B., Werner, U. (2011). "Case Studies of Acoustic Noise Emission From Inverter-Fed Asynchronous Machines", IEEE Trans. Ind. Appl., Vol. 47, pp. 2013- 2022.
[17] Ma, C., Zuo, S. (2014). "Black-Box Method of Identification and Diagnosis of Abnormal Noise Sources of Permanent Magnet Synchronous Machines for Electric Vehicles". IEEE Trans. Ind. Electron., Vol. 61, pp. 5538-5549.
[18] Ma, C., Liu, Q., Wang, D., Li, Q., Wang, L. (2015), "A Novel  Black and White  Box  Method for Diagnosis  and  Reduction of Abnormal  Noise of Hub Permanent  Magnet  Synchronous  Motors for Electric Vehicles". IEEE Trans. Ind. Electron., Vol. PP, pp. 1-12.
[19] Lecointe, J-P. (2004). "Five methods of stator natural frequency determination: case of induction and switched reluctance machines". Mechanical systems and signal processing 18.5, pp. 1133-1159.
[20] Blaabjerg, F., Pedersen, J. K., Ritchie, E., Nielsen, P. (1995). "Determination of Mechanical Resonances in Induction Motors by Random Modulation and Acoustic  Measurement". IEEE Trans. Ind. Appl., Vol. 31, pp. 823- 829.
[21] Sarrazin, M., Gillijns, S., Janssens, K., Auweraer, H. V. D., Verhaeghe, K. (2014). "Vibro-acoustic measurements and techniques for electric automotive applications". 43rd Int. Congress on Noise Control Engineering, Melbourne, Australia, pp. 1-10.