استفاده از روش شبیه‌سازی زیرمجموعه‌ای در کنترل فعال سازه‌ها

نوع مقاله: پژوهشی

نویسندگان

1 دانشجوی دانشگاه فردوسی مشهد

2 دانشیار، دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

در چند دهه گذشته، الگوریتم‌ها و وسایل کنترلی بسیاری برای کاربردهای مهندسی عمران پیشنهاد شده است، که هر یک از آن‌ها بسته به اهداف و کاربردهای خاص، دارای فواید خاصی می‌باشند. وجود یک معیار مشترک برای مقایسه الگوریتم‌ها و وسایل کنترلی می‌تواند بسیار مفید واقع شود. از آنجایی‌که، عدم قطعیت، در همه سازه‌ها امری ذاتی و اجتناب ناپذیر است، عدم توجه به آن، می‌تواند موجب تنزل یافتن عملکرد سازه کنترل‌شده گردد. به همین دلیل، اندازه‌گیری‌های احتمالاتی گسیختگی، برای ارزیابی دقیق، و مقایسه قدرتمند سیستم‌های کنترل سازه ضروری می‌باشد. چندین روش و الگوریتم ارزیابی قابلیت اطمینان، با توانایی‌، دقت و بازدهی گوناگون در گذشته مطرح شده است. یک مقایسه کمی از این روش‌ها می‌تواند برای جامعه مهندسی بسیار مفید و قابل استفاده باشد. در این پژوهش، از یک روش شبیه‌سازی به نام شبیه‌سازی زیرمجموعه‌ای، برای محاسبه احتمالات گسیختگی، به منظور آنالیز قابلیت اطمینان سیستم‌های مهندسی استفاده شده است. به همین منظور، چند نمونه از ارزیابی قابلیت اطمینان سازه‌های مبنای سه درجه آزادی، تحت اثر نویز سفید ایستا، مورد بررسی قرار گرفته‌اند، که در تمام این موارد، برای بهبود پاسخ سازه، از سیستم کنترل فعال، استفاده شده است. نتایج مورد بررسی نشان می‌دهد که روش شبیه‌سازی زیرمجموعه‌ای در ارزیابی احتمال گسیختگی سیستم‌های سازه‌ای با نواحی گسیختگی پیچیده، تعداد متغیرهای تصادفی زیاد و احتمالات گسیختگی کوچک، بسیار قدرتمند و کارآمد بوده، و به نحو شایسته‌ای، امکان مقایسه پارامترهای مختلف سیستم‌های کنترل‌شده را فراهم می‌آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Subset Simulation Method in Active Structural Control

نویسندگان [English]

  • Golsa Behnam rad 1
  • Hashem Shariatmadar 2
1 mashhad
2 mashhad
چکیده [English]

When designing new civil, mechanical or aerospace systems that will experience dynamic excitation in their operating environment, it is desirable to quantify the predicted performance of a proposed design in terms of the reliability that it will achieve the specified design objectives. In view of the uncertainties about the modeling of systems and about the future dynamic excitation the system will experience, the design team can specify a set of possible dynamic inputs and a set of possible models of the system and then choose probability distributions over these sets to model the uncertainties. One can then evaluate the ‘failure probability’ of the design that measures how likely the system will achieve the desired performance over its operational lifetime, based on available information and the probability models chosen to represent the missing information. Because of the uncertainty inherent in engineering structures, consistent probabilistic stability/performance measures are essential to accurately assessing and comparing the robustness of structural control systems. Several reliability estimation methods, procedures and algorithms with various capabilities, accuracy and efficiency have been suggested in the past. A quantitative comparison of these approaches is considered to be most instrumental and useful for the engineering community. An approach is presented herein for calculating such probabilistic measures for a controlled structure. Subset Simulation method is shown to be appropriate for the required calculations. The original version of Subset Simulation, SubSim/MCMC, employs a Markov chain Monte Carlo (MCMC) method to simulate samples conditional on intermediate failure events it is a general method that is applicable to all the benchmark problems. The concepts are illustrated through several examples of seismically excited structures with active protective systems. The results show that the original version of Subset Simulation based on the Metropolis–Hasting algorithm is robust and efficient in estimating the probability of failure of structural systems with complex failure regions, large numbers of random variables, and small probabilities of failure.and applicable to all problems.

کلیدواژه‌ها [English]

  • methods of reliability analysis
  • failure probability
  • subset simulation
  • active structural control
 

[1] Doyle J.C, Glover K, Khargonekar P, Francis B.A. State- space solutions to standard and control problems. IEEE Trans. Automat. Control 1989; 34:831-847.

[2] Housner, G.W., Masri, S.F., Chassiakos, A.G. Proceedings of the First World Conference on Structural Control, International Association for Structural Control, Los Angeles, 1994.

[3] Spencer B.F, Suhardjo J, Sain M.K. Frequency domain control algorithms for civil engineering applications. ProcInt, Workshop on Technology for Hong Kong's Infrastructure Development. Hong Kong, December 19-20, 1991:169-178.

[4] Spencer B.F, Suhardjo J, Sain M.K. Frequency domain optimal control strategies for aseismic protection. J EngMech, ASCE, to appear.

[5] Suhardjo J. Frequency domain techniques for control of civil engineering structures with some robustness considerations, Ph.D. Dissertation, University of Notre Dame, Department of Civil Engineering, 1990.

[6] Suhardjo J, Spencer B.F, Kareem A. Active control of wind excited buildings: a frequency domain based design approach. J Wind Engrg.Indust.Aerodyn 1992:41-44.

[7] Suhardjo J, Spencer B.F, Kareem A. Frequency domain optimal control of wind excited buildings. J EngMech, ASCE 1992;118(12):2463-2481.

[8] Ray L.R, Stengel R.F. A Monte Carlo approach to the analysis of the control system robustness.Automatica 1993;29(1):229-236.

[9] Spencer B.F, Montemagno C, Sain M.K, Sain P.M. Reliability of controlled structures subject to real parameter uncertainty. Proc. 6th ASCE Specialty Conf. on Probabilistic Mechanics and Structural and Geotechnical Safety, Denver, Colorado, July 8-10, 1992:369-372.

[10] Spencer B.F, Sain M.K, Kantor J.C, Montemagno C. Probabilistic stability measures for controlled structures subject to real parameter uncertainties. Smart Mater Structures 1993;1:294-305.

[11] Spencer B.F, Sain M.K, Kaspari D.C, Kantor J.C. Reliability-based design of active control strategies. Proc. ATC-17-1 Seminar on Isolation, Passive Energy Dissipation and Active Control, San Francisco, Calif, March 11-12, 1992:761-772.

[12] Au S.K. On the solution of first excursion problems by simulation with applications to probabilistic seismic performance assessment. PhD Thesis in Civil Engineering 2001, Division of Engineering and Applied Science, California Institute of Technology, California, USA.

[13] Au S.K, Beck J.L. Estimation of small failure probabilities in high dimensions by Subset Simulation. Probabilistic EngMech 2001;16(4):263-77.

[14]  Shariatmadar H, Behnam Rad G. Active Control of Structures and Reliability Analysis by Subset                 Simulation Method.  NATIONALPARK-FORSCHUNG IN DER SCHWEIZ 2013: 102(3): 136-157.

 

[15]Gaston R.R.E, Safonov M.G. Exact calculation of the multiloop stability margin. IEEE Trans, Automat Control 1988;33:156-171.

[16] Sideris A, Sanches Pena R.S. Fast computation of multivariable stability margin for real interrelated uncertain parameters. IEEE Trans, Automat Control 1989;34:1272-1276.

 ََ