تعیین موقعیت بهینه مهاربازویی و کمربند خرپایی در سازه های بلند مرتبه با سطح مقطع غیر یکنواخت

نوع مقاله : مقاله عمران

نویسندگان

1 دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان

2 دانشگاه شهید باهنر کرمان

چکیده

در این مقاله، محل بهینه سیستم مهار بازویی و کمربند خرپایی در ارتفاع سازه های بلند با سیستم ترکیبی قاب محیطی و هسته مرکزی همراه با مهار بازویی و کمربند خرپایی با احتساب تغییرات ممان اینرسی قاب محیطی در ارتفاع مورد بررسی قرار گرفته است. سازه قاب محیطی و هسته مرکزی بر اساس روش پیوسته با یک تیر طره با مقطع قوطی شکل مدل شده است. اثر مهار بازویی و کمربند خرپایی بر روی هسته مرکزی به صورت فنر پیچشی در محل قرارگیری سیستم مهار بازویی و کمربند خرپایی در ارتفاع سازه در نظر گرفته شده است. با استفاده از قضایای لنگر سطح و اصل رویهم گذاری، روابطی جهت محاسبه تغییر شکلهای سازه بدست آمده و سپس با در نظر گرفتن انرژی سیستم معادل بر اساس تغییر شکلهای بدست آمده، موقعیت بهینه مهار بازویی و کمربند خرپایی در سازه بلند تحت بار گسترده مثلثی بر اساس حداکثر نمودن انرژی جذب شده توسط فنر معادل، محاسبه شده است. در نهایت گرافی جهت تعیین موقعیت بهینه مهار بازویی و کمربند خرپایی با احتساب تغییرات ممان اینرسی قاب محیطی تحت بار گسترده مثلثی پیشنهاد شده است. صحت و کارایی روش پیشنهادی با استفاده از یک مثال عددی و مقایسه با روش های ارائه شده توسط سایر محققین و همچنین نتایج حاصل از آنالیز کامپیوتری نرم افزار SAP2000 بررسی شده است. نتایج بیانگر دقت قابل قبول روش پیشنهادی می باشد که بر اساس نتایج بدست آمده، موقعیت بهینه، در محدوده میانی ارتفاع سازه قرار دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination Optimum Location of Outrigger and Belt Truss System in Tall Buildings with Non-Uniform Cross Section

نویسندگان [English]

  • Hamid Raeisi 1
  • Mohsen Malekinejad 1
  • Reza Rahgozar 2
چکیده [English]

 In this paper, optimum location of outrigger and belt truss system of tall structures with combined system of framed tube, shear core, outrigger and belt truss with non-uniform cross section of frame tube system along the height of structure is investigated. Framed tube and shear core under lateral loads are modeled as a cantilevered beam with box cross section using continuum approach. Effects of outrigger and belt truss systems shear core is modeled as a rotational spring placed at the location of belt truss and outrigger system. Relations for calculating deformations of the equivalent structure are obtained using moment area and superposition theories. Then, considering total energy of the system based on obtained relation of deformations and maximizing absorbed energy by equivalent spring, the optimum location of outrigger and belt truss in tall structures under triangularly distributed loads along structure’s height is obtained. In addition, the graphs are presented for different moment of inertia of frame tube system that can be used for determining optimum location of belt truss and outrigger system. Accuracy and efficiency of the proposed method is investigated by a numerical example and comparing the results with those obtained by computer analysis and other researchers. The results show that the proposed method reasonably accurate and optimum location is middle height of the structure.

کلیدواژه‌ها [English]

  • Tall Structure
  • Frame Tube
  • Shear Core
  • Outrigger and Belt Truss
  • Non-Uniform Cross Section
  • Optimum Location
[1] Poon D.C.K., Shieh S., Joseph L.M. (2004). “Structural design of Taipei 101, the world’s tallest building”. Proceedings of the CTBUH 2004, Seoul Conference, Seoul, Korea, pp. 271-278.
[2] Smith, B. S., Salim, I. (1981). “Parameter Study of outrigger-braced tall building structures”. Journal of the Structural Division, Vol. 107, No. 10, pp. 2001-2014.
[3] Taranath, B. S. (2011). “Structural Analysis and Design of Tall Buildings: Steel and Composite Construction". CRC Press, Taylor & Francis Group, London.
[4] Stafford Smith, B. and Coull, A. (1991). “Tall Building Structures: Analysis and Design”, John Willey, New York.
[5] Zhang, Z., Fu, X., Wang, J. and Wei, Y. (1996). “Studies on structural performance of ultra-high-rise building with outrigger belts”. Journal of Building Structures, Vol. 17, No. 4, pp. 2-9.
[6] Wu, J. and Li, Q. (2003). “Structural performance of multi‐outrigger‐braced tall buildings”. The Structural Design of Tall and Special Buildings, Vol. 12, No. 2, pp. 155-176.
[7] Fu, X. (1999). “Design proposal for reinforced concrete high-rise building structure with outrigger belts”. Journal of Building Structures, Vol. 10, pp. 11-19.
[8] Taranath, B.S. (1975). "Optimum belt truss location for high-rise structures". Structural Engineering, Vol. 53, No. 8, pp. 18-21.
[9] Swaddiwudhipong, S., Zhou Q., Lee S.L. (2001). “Effect of axial deformation on vibration of tall buildings”, Journal of Structural Design of Tall and Special Buildings, Vol. 10, pp. 79-91.
[10] Stafford Smith, B., Coull, A. (1991). “Tall Building Structures: Analysis and Design”, John Wiley & Sons, New York.
[11] Taranath, B.S. (1988). “Structural Analysis and Design of Tall Buildings”, McGraw Hill Book Company, New York.
[12] Hoenderkamp, J.C.D., Bakker, M.C.M. (2003). “Analysis of high-rise braced frames with outriggers”. Journal of Structural Design of Tall and Special Buildings, Vol. 12, pp. 335–350.
[13] Hoenderkamp, J.C.D. (2008). “Second outrigger at optimum location on high-rise shear wall”, Journal of Structural Design of Tall and Special Buildings, Vol. 17, pp. 619–634.
[14] Rahgozar, R., Sharifi, Y. (2009). “An approximate analysis of combined system of framed tube shear core and belt truss in high-rise buildings”. Journal of Structural Design of Tall and Special Buildings, Vol. 18, No. 6, pp. 607-624.
[15] Rahgozar, R., Ahmadi, A., Sharifi, Y. (2010). “A simple mathematical model for approximate analysis of tall buildings”. Journal of Applied Mathematical Modeling, Vol. 34, pp. 2437-2451.
[16] Fawzia, S., Nasir, A., Fatima, T. (2011). “Study of the effectiveness of outrigger system for high-rise composite buildings for cyclonic region”. International Conference on Electrical, Computer, Electronics and Communication Engineering, pp. 937-45.
[17] Malekinejad, M., Rahgozar, R. (2011). “Free vibration analysis of tall buildings with outrigger-belt truss system”.  Earthquake and Structures, Vol. 2, No. 1, pp. 89-107.
[18] Malekinejad, M., Rahgozar, R. (2012). "A closed form solution for free vibration analysis of tube-in-tube systems in tall buildings", International Journal of Engineering; Transactions A: Basics, Vol. 25, No. 2, 91-99.
[19] Malekinejad, M., Rahgozar, R. (2012). "A simple analytic method for computing the natural frequencies and mode shapes of tall buildings", Applied Mathematical Modelling, Elsevier, Vol. 36, No. 8, pp. 3419-3432.
[20] Jahanshahi M. R., Rahgozar R. (2013). “Optimum location of outrigger-belt truss in tall buildings based on maximization of the belt truss strain energy”. International Journal of Engineering, Vol. 26, No. 7, pp. 693-700.
[21] Raj Kiran Nanduri, P.M.B., Suresh. B., Ihtesham Hussain M.D. (2013). “Optimum position of outrigger system for high-rise reinforced concrete buildings under wind and earthquake loadings”. American Journal of Engineering, Vol. 2, No. 8, pp. 76-89.
[22] Kamgar, R., Rahgozar, R. (2015). “Determination of optimum location for flexible outrigger systems in non-uniform tall buildings using energy method”. International Journal of Optimization in Civil Engineering, Vo. 5, No. 4, pp. 433-444.
[23] Kamgar, R., Rahgozar, R. (2016). “Determination of optimum location for flexible outrigger systems in tall buildings with constant cross section consisting of framed tube, shear core, belt truss and outrigger system using energy method”. International Journal of Steel Structures, Vol. 16, No. 3, pp. 1-8.
[24] Schueller, W. (1977). “High-Rise Building Structures”. John Wiley & Sons, New York.
[25] Kwan, A. (1994). "Simple method for approximate analysis of framed tube structures". Journal of Structural Engineering, Vol. 120, No. 4, pp. 1221-1239.
[26] Lee, K. K., Loo, Y. C., Guan, H. (2001). "Simple analysis of framed-tube structures with multiple internal tubes", Journal of Structural Engineering, Vol. 127, No. 4, 450-460
[27] Jahanshahi, M., Rahgozar, R., Malekinejad, M., (2012), "A simple approach to static analysis of tall buildings with a combined tube-in-tube and outrigger-belt truss system subjected to lateral loading". International Journal of Engineering; Transactions A: Basics, Vol. 25, No. 3, pp. 289-300.
[28] Matlab R2013a, Version 8.8.0.604, Mathworks Inc., California, USA.
[29] SAP2000 Advanced 14.0.0, Computers and Structures, Berkeley, California, USA.