بهینه سازی همزمان میانگین و واریانس توابع هدف در زنجیره تأمین غیر قطعی

نوع مقاله: پژوهشی

نویسندگان

1 دانشگاه قم

2 دانشگاه تربیت مدرس

چکیده

تنظیم متغیرهای تصمیم به منظور مینیمم‌سازی هزینه کل زنجیره یکی از مسائل مهم در ادبیات زنجیره تأمین محسوب می‌شود. در طی سال‌های اخیر روش‌های متعددی برای حل این مسائل ارائه شده است. اما بیشتر این رویکردها، پارامترهای مسئله از قبیل میزان تقاضا و زمان رسید کالا را قطعی فرض نموده‌اند و همچنین از همبستگی بالقوه بین اهداف زنجیره غفلت نموده‌اند. در این مطالعه یک رویکرد بهینه سازی بر اساس رویکرد تابع مطلوبیت برای حل مسئله زنجیره تأمین چند هدفه پیشنهاد شده است که نه تنها همه‌ی اهداف را به طور همزمان در یک حداقل سطح مطلوبیت با پارامترهای احتمالی از نقطه نظر تصمیم گیرنده (DM) قرار می‌دهد، بلکه همچنین همبستگی بالقوه بین اهداف و اهمیت نسبی آن‌ها را ضمن تلاش برای حداقل ساختن اثر متغیرهای غیر قابل کنترل (فاکتورهای اختلال) روی اهداف، لحاظ می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Simultaneous optimization of mean and variance of objective functions in a supply chain problem under uncertainty

نویسندگان [English]

  • ali salmasnia 1
  • ali zandieh 2
  • Mohammadreza Namdar 1
چکیده [English]

To attain a setting of decision variables that minimize the total cost of supply chain is the one of important problems in the literature review of the supply chain. Recently, several methods have suggested approaches addressing these problem but most of them assume that the parameters such as demands, supply and deliveries to be deterministic and ignore potential correlation among the supply chain objectives. In this study, a desirability function-based optimization approach is proposed that not only considers uncertainty in parameters and sets simultaneously all objectives in a minimum desirability level but also takes into account potential correlation between objectives and minimizes the effect of uncontrollable variables or noise factors.

کلیدواژه‌ها [English]

  • supply chain
  • multi-objective optimization
  • Uncertainty
  • Desirability function
  • Response surface methodology
[1]     Z. Shen, “Integrated supply chain design models: a survey and future research directions,” MANAGEMENT, vol. 3, no. 1, pp. 1–27, 2007.

[2]     S. Chopra and P. Meindl, Supply Chain Management: Strategy Planning and Operation. Pearson Education Asia, New Delhi, 2001.

[3]     S. Pokharel, “A two objective model for decision making in a supply chain,” International Journal of Production Economics, vol. 111, no. 2, pp. 378–388, 2008.

[4]     E. Teimoury, M. Modarres, F. Ghasemzadeh, and M. Fathi, “A queueing approach to production-inventory planning for supply chain with uncertain demands: Case study of PAKSHOO Chemicals Company,” Journal of Manufacturing Systems, 2010.

[5]     C. C. Sherbrooke, “METRIC: A multi-echelon technique for recoverable item control,” Operations Research, pp. 122–141, 1968.

[6]     J. C. H. Pan and J. S. Yang, “A study of an integrated inventory with controllable lead time,” International Journal of Production Research, vol. 40, no. 5, pp. 1263–1273, 2002.

[7]     L. Y. Ouyang, K. S. Wu, and C. H. Ho, “Integrated vendor-buyer cooperative models with stochastic demand in controllable lead time,” International Journal of Production Economics, vol. 92, no. 3, pp. 255–266, 2004.

[8]     H. C. Chang, L. Y. Ouyang, K. S. Wu, and C. H. Ho, “Integrated vendor-buyer cooperative inventory models with controllable lead time and ordering cost reduction,” European Journal of Operational Research, vol. 170, no. 2, pp. 481–495, 2006.

[9]     Y. C. Hsiao, “Integrated logistic and inventory model for a two-stage supply chain controlled by the reorder and shipping points with sharing information,” International Journal of Production Economics, vol. 115, no. 1, pp. 229–235, 2008.

[10] ع.ا. طالعی زاده و ز. چراغی، "قیمت گذاری و بازاریابی در یک زنجیره تامین دوسطحی تحت چهار رویکرد نظریه بازی‌ها."  مجله مدل سازی در مهندسی. سال سیزدهم، شماره42، ص 135-149، پاییز94.

[11] ع. نعیمی صدیق، س.ک. چهارسوقی و م. شیخ محمدی، "طراحی مدل هماهنگی در زنجیره تامین رقابتی با استفاده از رویکرد نظریه بازی با همکاری و بدون همکاری."  مجله مدل سازی در مهندسی. سال دهم، شماره29، ص 19-31، تابستان91.

[12]   M. T. Melo, S. Nickel, and F. Saldanha-Da-Gama, “Facility location and supply chain management-a review,” European Journal of Operational Research, vol. 196, no. 2, pp. 401–412, 2009.

[13]   P. Schütz, A. Tomasgard, and S. Ahmed, “Supply chain design under uncertainty using sample average approximation and dual decomposition,” European Journal of Operational Research, vol. 199, no. 2, pp. 409–419, 2009.

[14]   T. Santoso, S. Ahmed, M. Goetschalckx, and A. Shapiro, “A stochastic programming approach for supply chain network design under uncertainty,” European Journal of Operational Research, vol. 167, no. 1, pp. 96–115, 2005.

[15]   M. Bundschuh, D. Klabjan, and D. L. Thurston, “Modeling robust and reliable supply chains,” Optimization Online e-print, 2003.

[16]   A. Gupta and C. D. Maranas, “Managing demand uncertainty in supply chain planning,” Computers & Chemical Engineering, vol. 27, no. 8-9, pp. 1219–1227, 2003.

[17]   G. Guillén-Gosálbez and I. E. Grossmann, “Optimal design and planning of sustainable chemical supply chains under uncertainty,” AIChE Journal, vol. 55, no. 1, pp. 99–121, 2009.

[18]   C. C. Hsieh and C. H. Wu, “Capacity allocation, ordering, and pricing decisions in a supply chain with demand and supply uncertainties,” European Journal of Operational Research, vol. 184, no. 2, pp. 667–684, 2008.

[19]   Z. J. M. Shen, C. Coullard, and M. S. Daskin, “A joint location-inventory model,” Transportation Science, vol. 37, no. 1, pp. 40–55, 2003.

[20] م.ر. فضلی خلف، س.ک. چهارسوقی و م.س پیشوایی، "طراحی پایای شبکه زنجیره تامین حلقه بسته تحت عدم قطعیت: مطالعه موردی یک تولید‌کننده باتری‌‌ اسیدی."  مجله مدل سازی در مهندسی. سال دوازدهم، شماره39، ص 45-60، زمستان1393.

 [21]  G. Guillén, F. Mele, M. Bagajewicz, A. Espuna, and L. Puigjaner, “Multiobjective supply chain design under uncertainty,” Chemical Engineering Science, vol. 60, no. 6, pp. 1535–1553, 2005.

[22]   G. E. . Box and N. R. Draper, Empirical model-building and response surfaces. John Wiley & Sons, 1987.

[23]   A. Khuri, Multiresponse Surface Methodology, vol. 13. Amsterdam, 1996.

[24]   K. J. Kim and D. K. . Lin, “Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions,” Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 49, no. 3, pp. 311–325, 2000.