بررسی مدل ترمودینامیکی برای کاتالیست نیکل ارتقا یافته با اکسید سریم روی پایه اکسید منیزیم نانو کریستالی در فرایند ریفرمینگ خشک متان

نوع مقاله: مقاله شیمی

نویسندگان

1 دانشگاه کاشان

2 گروه مهندسی شیمی-دانشگاه کاشان

چکیده

در این مقاله، کاتالیست نیکل ارتقا یافته با اکسید سریم بر روی پایه نانو کریستالی اکسید منیزیم تهیه گردیده است و در فرایند ریفرمینگ خشک متان استفاده شده است. کاتالیست تهیه شده 10%Ni-7%CeO2/MgO با آنالیزهای پراش پرتوی اشعه ایکس (XRD) و جذب سطحی نیتروژن (BET) مورد ارزیابی قرار گرفت. نتایج نشان داد که کاتالیست تهیه شده دارای سطح ویژه m2 g-1 08/58، حجم حفرات cm3g-1 40/0 و اندازه حفرات nm 45/19 بوده است. آنالیز ترمودینامیکی با استفاده از مینیمم سازی انرژی آزاد گیبس و با به کارگیری روش ضرایب نامعین لاگرانژ انجام شد و داده های تجربی با مدل ترمودینامیکی مقایسه شد. نتایج بدست آمده از این مقایسه حاکی از آن بود که انحراف داده های تجربی با داده های پیش بینی شده توسط مدل برای مقدار تبدیل CO2 و CH4، مقدار بهره H2 و CO و مقدار CO/H2 با دما به ترتیب 69/3، 95/1، 78/1، 32/2 و 07/0 می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Thermodynamic Model for Ceria Promoted Nickel Catalyst Supported on Nanocrystalline MgO in Dry Reforming of Methane

نویسندگان [English]

  • Masoud Khajenoori 1
  • Fereshteh Meshkani 2
  • mehran rezaei 1
2 Chemical Eng. Department, University of Kashan
چکیده [English]

In this research paper, ceria promoted nickel catalysts supported on nanocrystalline MgO were prepared and employed in methane reforming with carbon dioxide for syngas production. The textural properties of the prepared catalyst (10%Ni-7%CeO2/MgO) was characterized by the X-ray diffraction (XRD) and nitrogen adsorption (BET) techniques in order to study the crystalline phases and also the textural characteristics of this nickel based catalyst. The characterization results showed that the prepared nickel catalyst possessed BET area of 58/08 m2 g-1, pore volume of 0.40 cm3 g-1 and pore size of 19.45 nm. In addition, the thermodynamic model was investigated using the Gibbs energy minimization method and the results were compared with experimental tests. The results confirmed that the deviation of experimental data and data predicted by the model (absolute average deviation) for methane and carbon dioxide conversions, yield of H2 and CO, H2/CO ratio were 3.969, 1.95, 1.78, 2.32 and 0.07, respectively.

کلیدواژه‌ها [English]

  • Nickel Catalyst
  • Promoted
  • Cerium Oxide
  • Dry Reforming
  • Thermodynamic
 

[1] Díaz, K., García, V. J. (2007). “Methane conversion on Pt-Ru nanoparticles alloy supported on hydrothermal carbon”. Fuel, Vol. 86, pp. 1337–1344.

[2] Peymani, M., Alavi, S.M., Rezaei, M. (2017). “Synthesis gas production by catalytic partial oxidation of propane on mesoporous nanocrystalline Ni/Al2O3 catalysts”. Applied Catalysis A: General, Vol. 529, pp. 1-9.

[3] Zarei, M., Meshkani, F., Rezaei, M. (2016). “Preparation of mesoporous nanocrystalline Ni-MgAl2O4 catalysts by sol-gel combustion method and its applications in dry reforming reaction”. Advanced Powder Technology, Vol. 27, pp. 1963-1970.

[4] Sepehri, S., Rezaei, M. (2017). “Ce promoting effect on the activity and coke formation of Ni catalysts supported on mesoporous nanocrystalline γ-Al2O3 in autothermal reforming of methane”. International Journal of Hydrogen Energy, Vol. 42, pp. 11130-11138.

[5] Zhu, B., Li, X.  S., Shi, C., Liu, J. L., Zhao, T. L., Zhu, A. M. (2012). “Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma”. Internatoinal Journal of Hydrogen Energy, Vol. 37, pp. 4945 -4954

[6] Nematollahi, B., Rezaei, M., Khajenoori, M. (2011). “Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts”. Internatoinal Journal of Hydrogen Energy, Vol. 36, pp. 296 9 -2978.

[7] Fan, M. S., Ahmad Zuhairi, A., Bhatia, S. (2009). “Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas”. ChemCatChem, Vol. 1, pp. 192 – 208.

[8] Naeimi, H., Rabiei, Kh., Rezaei, M., Meshkani, F. (2013). “Nanocrystalline magnesium oxide as a solid base catalyst promoted one pot synthesis of gem-dichloroaziridine derivatives under thermal conditions”. IRAN CHEM SOC, Vol. 10, pp. 161–167.

[9] Hou, Z., Gao, J., Guo, J., Liang, D., Lou, H., Zheng, X. (2007). “Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor”. Journal of Catalysis, Vol. 250, pp. 331-341.

[10] Rezaei, M., Khajenoori, M., Nematollahi, B. (2011). “Preparation of nanocrystalline MgO by surfactant assisted precipitation method”. Materials Research Bulletin, Vol. 46, pp. 1632-1637.

[11] Andache, M., Rezaei, M., Kazemimoghadam, M. (2013). “A nanocrystalline MgO support for Ni catalysts for steam reforming of CH4”. Chinese Journal of Catalysis, Vol. 34, pp. 1443–1448.

[12] Meshkani, F., Rezaei, M. (2009). “Facile Synthesis of Nanocrystalline Magnesium Oxide with High Surface Area”. Powder Technology, Vol. 196, pp. 85–88.

[13] خواجه نوری، م.، رضایی، م.، مشکانی، ف. (1395)، بررسی تأثیر مواد فعال سطحی بر ساختار و فعالیت کاتالیست نیکل بر پایه منیزیم اکسید در فرایند ریفرمینگ خشک متان، نشریه علمی و پژوهشی شیمی و مهندسی شیمی ایران، دوره 35، شماره 1.

[14] Khajenoori M., Rezaei M., Meshkani F. (2015). “Dry reforming over CeO2-Promoted Ni/MgO Nano-Catalyst: Effect of Ni Loading and CH4/CO2 Molar Ratio”. Journal of Industrial and Engineering Chemistry, Vol. 21, pp. 717-722.

[15] Khajenoori M., Rezaei M., Meshkani F. (2014). “Characterization of CeO2 Promoter of a Nanocrystalline Ni/MgO Catalyst in Dry Reforming of Methane”. Chemical Engineering & Technology, Vol. 37, pp. 957-963.

[16] Amin, N. A. S., Yaw, T. C. (2007). “Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas”. International Journal of Hydrogen Energy, Vol. 32, pp. 1789–1798.

[17] Nematollahi, B., Rezaei, M., NematiLay, E., Khajenoori, M. (2012). “Thermodynamic analysis of combined reforming process using Gibbs energy minimization method: In view of solid carbon formation”. Journal of Natural Gas Chemistry, Vol. 21, pp. 694–702.

[18] Ghoreishi, S.M., Gholami Shahrestani, R. (2009). “Subcritical water extraction of mannitol from olive leaves”. Journal of Food Engineering, Vol. 93, pp. 474–481.