تحلیل خرابی پره‌های ثابت کمپرسور در یک توربین گاز

نوع مقاله: مقاله مکانیک

نویسندگان

1 دانشگاه شهید بهشتی

2 شهید بهشتی

چکیده

طی تعمیرات دوره‌ای توربین گازی مدل GT13D، شبه ترک‌هایی در پره‌های ثابت نیمه بالایی کمپرسور (ردیف‌های نیمه انتهایی) مشاهده شده که به صورت رفتگی‌هایی در محل اتصال پره‌های ثابت به ریشه ظاهر شده بودند. همچنین در اثر پدیده‌ای مشابه، لبه حمله پره در همین منطقه دچار آسیب شده که موجب تعویض تعدادی از پره‌ها گردید. در این مقاله سعی شده است با بررسی این پره‌ها از دیدگاه‌ها و روش‌های مختلف، نظیر سختی، جنس، شکل ظاهری، لایه‌های سطحی، ریزساختار، کیفیت سطوح با میکروسکوپ الکترونی SEM و... مکانیزم غالب در فرسایش این پره‌ها مشخص و عامل این خرابی تعیین گردد. از این بررسی‌ها نتیجه شده است که جنس پره فولاد زنگ نزن مارتنزیتی با سختی تقریباً یکسان در تمامی قسمت‌ها می‌باشد و هیچ گونه تغییرات ساختاری که نشان دهنده تغییرات درجه حرارت باشد دیده نمی‌شود. همچنین عامل فرسایش و خرابی نمی‌تواند مربوط به وجود ذرات خارجی باشد، بررسی‌ها وقوع پدیده سایش(Erosion) در اثر عبور جریان هوا از روی پره‌ها را محتمل می‌نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Failure analysis of stationary blades in a gas turbine compressor

نویسندگان [English]

  • e moussavi e moussavi 1
  • Ali Jahangiri 2
1 shahid beheshti university
2 shahid beheshti
چکیده [English]

During the GT13D gas turbine overhaul, there have been quasi-cracks in the stator blades of semi upper-end compressor rows that appeared in the grooves at the point where stator blades were attached to the roots. Also, due to the same phenomenon, the blade leading edge was damaged in the same area, which caused the replacement of a number of blades. In this paper, it has been tried to investigate these blades from different views and methods such as hardness, material, appearance, surface layers, microstructure, surface quality with SEM electron microscope and ... The dominant mechanism in erosion of this blade and the cause of this failure is determined. The results of these studies suggest that the martensitic stainless steel blade type is hardly uniform in all parts, and there are no structural changes indicative of temperature variations. Also, the erosion and deterioration factor can not be related to the presence of external particles. Studies have shown that the occurrence of the erosion phenomenon is likely due to the flow of air from the blades

کلیدواژه‌ها [English]

  • Failure analysis
  • Erosion
  • Stator blades
  • airflow
  • gas turbine compressor
  • SEM electron microscope
Lucjan, W., (2009). Experimental crack propagation analysis of the compressor blades working in high cycle fatigue condition, Fatigue of Aircraft Structures, vol. 1, pp. 195-204.

[2] Wu, X., (2010). Life Prediction of Gas Turbine Materials, Institute for Aerospace Research, National research Council, Canada, pp. 215-283.

[3] Hutson, A., Sathish, S., Nicholas, T. (2006). Progression of fretting fatigue damage in Ti-6Al-4V', Tribol. Int., Vol. 39, pp. 1197-1205.

[4] Garcia, D.B., Grandt Jr., A.F. (2005). Fractographic investigation of fretting fatigue cracks in Ti-6Al-4V, Eng. Fail. Anal, Vol. 12, pp. 537-548.

[5] Ma, L., Roy, M.S.K. (2013). Effect of load ratio on fatigue crack propagation behavior of solidsolution strengthened Ni-based super alloys at elevated temperature, Journal of Nuclear Materials, vol. 435, pp. 88-95.

[6] Conner, B.P., Hutson, A.L., Chambon, L. (2003). Observation of fretting fatigue micro-damage of Ti-6Al-4V, Wear, Vol. 255 , pp. 259-268.

]7 [قادری، س. ه.، حاجی اسماعیلی، ا. (1395)، الگوریتم چینش بهینه پرههای توربین با در نظر گرفتن نامیزانی اولیه دیسک،  نشریه علمی و پژوهشی مدل سازی در مهندسی ، دانشگاه سمنان، سال 14، شماره 47.

]8 [فریدون، ع.، یکتای کیا، ف. (1388)، تحلیل ترک در مواد مرکب به وسیله روش انرژی،  نشریه علمی و پژوهشی مدل سازی در مهندسی ، دانشگاه سمنان، سال 7، شماره 17.

]9 [پورموید، ع.، جاویدراد، ف. زارعی، ح.، شهریاری، م. (1391)، تدوین فرآیندی بر مبنای مهندسی معکوس برای بهبود و ساخت قطعات فرسوده مکانیکی و سازه های هوایی، نشریه علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان، سال 10، شماره 28.

[10] Rao, J.S., (1991). Turbo machine Blade Vibration, V.R. Damodaran, ed., Wiley Eastem Limited, India.

[11] Xi N.S., Zhong P.D., Huang H.Q., Yan H., Tao C.H, (2000). Failure investigation of blade and disk in first stage compressor, Eng. Fail Anal, Vol.7, pp. 385–392.

[12] Hou J., Bryon J.W., Ross A. (2002). An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis, Engineering Failure Analysis, Vol.9, pp. 201–211.

[13] Beisheim J.R., Sinclair G.B., On the three-dimensional finite element analysis of dovetail attachment, [in:] Proceedings of ASME Turbo Expo 2002, Amsterdam, The Netherlands (2002).

[14] Hutson A., Nicholas T., Johnc R. (2005). Fretting fatigue crack analysis in Ti-6Al-4V, Int. J. Fatigue, Vol. 27, pp. 1582-1589,.

[15] Mamandi, A., Rajabi, M. (2014). Fracture mechanics analysis of SGT-600 gas turbine compressor blade using FEM, The 3rd National Gas Turbine Conference (GTC93), Mechanical Engineering Faculty, Iran University of Science and Technology, Tehran, Iran, 20-21 May.

[16] Zdzislaw, M., Hernández-Rossette, A.  (2010). “Failure Evaluation of the Compressor Vanes of Combined Cycle Unit”, ASME 2010 Power Conference, Chicago, Illinois, USA, July 13-15, pp. 331-337.

Joseph, R. (1993). ASM Specialty Handbook, Failure Analysis prevention, ASM International, 087170496X, USA.

[18] Robert, D. P., Harvey, M. H., (1991). Nalco Guide to Boiler Failure Analysis, Nalco Chemical Company.

]19 [گلعذار، م. ع.، (1390)، عملیات حرارتی فولادها و چدن­ها، دانشگاه صنعتی اصفهان.