[1] F. E. Grubbs, (1969) , “Procedures for Detecting Outlying Observations in Samples,” Technometrics, vol. 11, no. 1, pp. 1–21.
[2] W. Rechenberg, (1982) , “Identification of outliers,” Fresenius’ Zeitschrift fur Anal. Chemie, vol. 311, no. 6, pp. 590–597.
[3] Y. Ma, P. Zhang, Y. Cao, and L. Guo, (2013) , “Parallel auto-encoder for efficient outlier detection,” Proc. - 2013 IEEE Int. Conf. Big Data, Big Data 2013, vol. 2, no. 3, pp. 15–17.
[4] C. Zhou and R. C. Paffenroth, (2017) , “Anomaly Detection with Robust Deep Autoencoders,” Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD ’17, pp. 665–674.
[5] M. S. Aldosari and E. Blaisten-Barojas, (2016) , “Unsupervised Anomaly Detection in Sequences Using Long Short Term Memory Recurrent Neural Networks,” George Mason University, pp. 1-25.
[6] S. P. Singh, A. Kumar, H. Darbari, L. Singh, A. Rastogi, and S. Jain, (2017) , “Machine translation using deep learning: An overview,” 2017 International Conference on Computer, Communications and Electronics (Comptelix). pp. 162–167.
[7] S. Chauhan and L. Vig, (2015) , “Anomaly detection in ECG time signals via deep long short-term memory networks,” in Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, pp. 1–7.
[8] M. Markou and S. Singh, (2003) , “Novelty detection: a review—part 1: statistical approaches,” Signal Processing, vol. 83, no. 12, pp. 2481–2497.
[9] M. Markou and S. Singh, (2003) , “Novelty detection: a review—part 2:: neural network based approaches,” Signal Processing, vol. 83, no. 12, pp. 2499–2521.
[10] E. R. de Faria, I. R. Goncalves, J. ao Gama, and A. C. P. de L. F. Carvalho, (2015) , “Evaluation of Multiclass Novelty Detection Algorithms for Data Streams,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 11, pp. 2961–2973.
[11] Satheesh Chandran C., S. Kamal, A. Mujeeb, and Supriya M.H., (2015) , Feb-, “Novel class detection of underwater targets using Self-Organizing neural networks,” in 2015 IEEE Underwater Technology (UT), pp. 1–5.
[12] L. Tarassenko, (1995) , “Novelty detection for the identification of masses in mammograms,” in 4th International Conference on Artificial Neural Networks, vol. 1995, pp. 442–447.
[13] K. WORDEN, G. MANSON, and D. ALLMAN, (2003) , “Experimental Validation of a Structural Health Monitoring Methodology: Part I. Novelty Detection on a Laboratory Structure,” J. Sound Vib., vol. 259, no. 2, pp. 323–343.
[14] J. Foote, (2000) , “Automatic audio segmentation using a measure of audio novelty,” in 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532), vol. 1, pp. 452–455.
]15[ غ. شفابخش, ح. نادر پور, ف. فصیحی, (1389) , “انتخاب الگوریتم بهینه شبکه عصبی در تحلیل روسازیهای انعطافپذیر راهها”, مدلسازی در مهندسی, دوره 8, شماره 21, صفحه 56-45
]16[ ع. مرتضایی, ع. خیرالدین, (1391) , “مدلسازی و تخمین طول مفصل پلاستیک ستونهای بتنآرمه به کمک شبکههای عصبی مصنوعی”, مدلسازی در مهندسی,
دوره 10، شماره 29، صفحه 17-1
]17[ ز. مروج, ج. آذرخش, (1394) , “شبیهسازی و طبقهبندی وقایع کیفیت توان با استفاده از شبکه عصبی” , مدلسازی در مهندسی,
دوره 13، شماره 41، صفحه 146-137
]18[ س. ع. سلیمانی ایوری, م. فدوی امیری, ح. مروی, (1395) , “تولید سیگنال مصنوعی زلزله به کمک مدلی جدید در فشردهسازی و آموزش شبکههای عصبی مصنوعی,” مدلسازی در مهندسی, دوره 14, شماره 46, صفحه 85-75
[19] E. W. Tavares Ferreira, G. Arantes Carrijo, R. de Oliveira, and N. Virgilio de Souza Araujo, (2011) , “Intrusion Detection System with Wavelet and Neural Artifical Network Approach for Networks Computers,” IEEE Lat. Am. Trans., vol. 9, no. 5, pp. 832–837.
[20] M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, (2014) , “A review of novelty detection,” Signal Processing, vol. 99, pp. 215–249.
[21] B. B. Thompson, R. J. Marks, J. J. Choi, M. A. El-Sharkawi, and C. Bunje, (2002) , “Implicit learning in autoencoder novelty assessment,” Proc. 2002 Int. Jt. Conf. Neural Networks. IJCNN’02 (Cat. No.02CH37290), pp. 2878–2883.
[22] M. Sabokrou, M. Fathy, M. Hoseini, and R. Klette, (2015) , “Real-time anomaly detection and localization in crowded scenes,” 2015 IEEE Conf. Comput. Vis. Pattern Recognit. Work., pp. 56–62.
[23] W. Yan and L. Yu, (2015) , “On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors : A Deep Learning Approach,” PHM Conf., pp. 1–8.
[24] Y. Xiong and R. Zuo, (2016) , “Recognition of geochemical anomalies using a deep autoencoder network,” Comput. Geosci., vol. 86, pp. 75–82.
[25] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, (2015) , “Long Short Term Memory Networks for Anomaly Detection in Time Series,” in European Symposium on Artificial Neural Networks, no. April, pp. 22–24.
[26] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff, (2016), “LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection,” in Anomaly Detection Workshop at 33rd International Conference on Machine Learning (ICML 2016), pp. 25–30.
[27] M. Cheng, Q. Xu, J. Lv, W. Liu, Q. Li, and J. Wang, (2016), “MS-LSTM: A multi-scale LSTM model for BGP anomaly detection,” Proc. - Int. Conf. Netw. Protoc. ICNP, vol. 2016–Decem, no. NetworkML, pp. 1–6.
[28] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, (1999) , “Support vector method for novelty detection,” Proceedings of the 12th International Conference on Neural Information Processing Systems. MIT Press, pp. 582–588.
[29] J. Ma and S. Perkins, (2003) , “Time-series novelty detection using one-class support vector machines,” in Proceedings of the International Joint Conference on Neural Networks, 2003. vol. 3, pp. 1741–1745.
[30] P. Hayton, B. Schölkopf, L. Tarassenko, and P. Anuzis, (2000) , “Support vector novelty detection applied to jet engine vibration spectra,” Proceedings of the 13th International Conference on Neural Information Processing Systems. MIT Press, pp. 907–913.
[31] L. Tarassenko, A. Nairac, N. Townsend, and P. Cowley, (1999) , “Novelty detection in jet engines,” in IEE Colloquium on Condition Monitoring: Machinery, External Structures and Health (Ref. No. 1999/034), vol. 1999, pp. 1–5.
[32] L. Clifton, D. A. Clifton, Y. Zhang, P. Watkinson, L. Tarassenko, and H. Yin, (2014) , “Probabilistic Novelty Detection With Support Vector Machines,” IEEE Trans. Reliab., vol. 63, no. 2, pp. 455–467.
[33] D. R. Hardoon and L. M. Manevitz, (2000) , “One-class machine learning approach for fMRI analysis,” in Proceedings of Postgraduate Research Conference in Electronics, Photonics, Communications and Networks, and Computer Science (PREP), Lancaster, UK, 2005b, pp. 1–2.
[34] M. Davy, F. Desobry, A. Gretton, and C. Doncarli, (2006) , “An online support vector machine for abnormal events detection,” Signal Processing, vol. 86, no. 8, pp. 2009–2025.
[35] J. Elman, (1990) , “Finding structure in time* 1,” Cogn. Sci., vol. 14, no. 1, pp. 179–211.
[36] M. Jordan, (1997) , “Serial order: A parallel distributed processing approach,” Adv. Psychol., vol. 121, pp. 471–495.
[37] Z. C. Lipton, J. Berkowitz, and C. Elkan, (2015) , “A Critical Review of Recurrent Neural Networks for Sequence Learning,” pp. 1–38.
[38] S. Hochreiter and J. Urgen Schmidhuber, (1997) , “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780.
[39] F. A. Gers and J. Schmidhuber, (2000) , “Recurrent nets that time and count,” in Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, pp. 189–194 vol.3.
[40] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, (2017) , “LSTM: A Search Space Odyssey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 10. pp. 2222–2232.
[41] T. Fawcett, (2006) , “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874.
[42] M. Goldstein, and S. Uchida, (2016) , “A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data,” PLoS One, no. April, pp. 1–31.
[43] R. C. Staudemeyer, (2015) , “Applying long short-term memory recurrent neural networks to intrusion detection,” Sacj, vol. 56, no. 56, pp. 136–154.
[44] G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková, E. Schubert, I. Assent, and M. E. Houle, (2016) , “On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study,” Data Min. Knowl. Discov., vol. 30, no. 4, pp. 891–927.
[45] A. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong, (2015) , “A Meta-Analysis of the Anomaly Detection Problem,” Oregon State University Libraries & Press, pp. 12-23.
[46] O. L. Mangasarian, W. N. Street, and W. H. Wolberg, (1995) , “Breast Cancer Diagnosis and Prognosis Via Linear Programming,” Oper. Res., vol. 43, no. 4, pp. 570–577.
[47] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, (2009) , “LoOP: local outlier probabilities,” Proc. 18th ACM Conf. Inf. Knowl. Manag., pp. 1649–1652.
[48] B. Micenková, B. McWilliams, and I. Assent, (2014) , “Learning Outlier Ensembles : The Best of Both Worlds – Supervised and Unsupervised,” Proc. ACM SIGKDD Work. Outlier Detect. Descr. ODD., pp. 1–4.
[49] W. Schi, M. Joost, R. Werner, and D.- Koblenz, (1992) , “Synthesis and Performance Analysis of Multilayer Neural Network Architectures,” Koblenz, pp. 100-130.
[50] N. Abe, B. Zadrozny, and J. Langford, (2006) , “Outlier detection by active learning,” in Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’06, pp. 504–509.
[51] M. Reif, M. Goldstein, A. Stahl, and T. M. Breuel, (2008) , Dec-, “Anomaly detection by combining decision trees and parametric densities,” in 2008 19th International Conference on Pattern Recognition, pp. 1–4.
[52] J.-M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, (2005) , “The Amsterdam Library of Object Images,” Int. J. Comput. Vis., vol. 61, no. 1, pp. 103–112.
[53] E. Schubert, R. Wojdanowski, A. Zimek, and H.-P. Kriegel, (2012) , “On Evaluation of Outlier Rankings and Outlier Scores,” Proc. 2012 SIAM Int. Conf. Data Min., pp. 1047–1058.
[54] U. Carrasquilla, (2010) , “Benchmarking Algorithms for Detecting Anomalies in Large Datasets,” Rev. Lit. Arts Am., pp. 1–16.
[55] K. Leung and C. Leckie, (2005) , “Unsupervised anomaly detection in network intrusion detection using clusters,” Proc. Twenty-eighth Australas. Conf. Comput. Sci. - Vol. 38, vol. 38, no. January, pp. 333–342.