مطالعه عددی پاشش متقاطع جت های صوتی دو-مرحله ای در جریان عرضی مافوق صوت بعد از یک پله

نوع مقاله: مقاله مکانیک

نویسندگان

دانشگاه تربیت مدرس، دانشکده مهندسی مکانیک

چکیده

مخلوط شدن مناسب سوخت و هوا تأثیر زیادی بر احتراق کارآمد در محفظه‌های احتراق موتورهای اسکرمجت دارد. در طراحی موتورهای اسکرمجت، اختلاط کافی بین جریان هوای مافوق صوت و جت سوخت پاشش شده یک مسأله حیاتی است و به دلیل زمان اقامت خیلی کوتاه مخلوط در جریان مافوق صوت، پایداری احتراق بسیار مشکل می‌باشد. زمان اقامت سیال در یک موتور اسکرمجت فقط در حدود چند میلی‌ثانیه است. لذا تحقیق بر روی پاشش و انتشار سوخت یک مسأله بسیار مهم در طراحی این موتورها می‌باشد. در این مقاله پاشش متقاطع دو-مرحله‌ای جت صوتی دایروی به درون جریان مافوق صوت بعد از پله به صورت عددی بررسی شده است. در مقایسه با پاشش موازی، پاشش متقاطع عمق نفوذ سوخت بهتر و ترکیب مناسب‌تری فراهم می‌نماید ولی افت فشار سکون در این روش بیشتر از روش پاشش موازی است. معادلات ناویر-استوکس رینولدز-متوسط به همراه مدل آشفتگی k-ω sst و معادله حالت گاز کامل با استفاده از نرم‌افزار فلوئنت حل شده‌اند. نتایج حل عددی با داده‌های تجربی دردسترس مقایسه و صحّه‌گذاری شده‌اند که نتایج عددی تطابق خوبی با داده‌های تجربی دارند. شبیه‌سازی‌ها به خوبی موقعیت و شکل مشخصات اصلی جریان را نشان می‌دهند. حوزه جریان شامل امواج ضربه‌ای مختلفی از قبیل امواج ضربه‌ای کمانی، امواج ضربه-ای ناشی از جدایش، و امواج ضربه‌ای بشکه‌ای می‌باشد. نتایج نشان می‌دهند که ارتفاع دیسک ماخ انژکتور دوم بیشتر از انژکتور اول است که به دلیل افت فشار سکون ناشی از انژکتور اول است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of Staged Transverse Injection of Sonic Jets into Supersonic Crossflows behind a Step

نویسندگان [English]

  • Mostafa Zahedzadeh
  • Fathollah Ommi
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Efficient combustion in the Scramjet combustors depends on the proper air-fuel mixing. Sufficient mixing between the supersonic airstream and the fuel jet is critical for designing of scramjet engines, and this is due to the very short residence timescale for the mixture in supersonic flows. The fluid residence time is only about of the order of milliseconds in a scramjet engine, and therefore injection and spreading of the fuel is an important issue. In this paper staged transverse injection of sonic circular jets into supersonic crossflows behind a step has been studied numerically. In comparison with parallel injection, Transverse injection provides better fuel penetration with sufficient mixing and heat release but imposes larger stagnation pressure loss. Three-dimensional Reynolds Averaged Navier-Stokes equations and k-ω sst turbulence model and the perfect gas equation have been solved by using Fluent software. The results of the numerical solution are compared and validated with available experimental data. Numerical results showed good agreement with the experimental values. The simulations correctly captured the location and shape of the main flow features. The flow filed consists of various shock waves such as bow shocks, separation -induced shocks, and barrel shocks. Results showed that Mach disc height of the second injector is larger than first injector that is due to the stagnation pressure loss of the first injection.

کلیدواژه‌ها [English]

  • Scramjet combustor
  • Transverse injection
  • Supersonic flow
  • Shock waves
  • Crossflow
 

[1] Huang, W. (2018). “Mixing Enhancement Strategies and Their Mechanisms in Supersonic Flows: A Brief Review”, Acta Astronautica.

[2] Corin, S. (2009). “The Scramjet Engine Processes and Characteristics”, New York: Cambridge University Press.

[3] زاهدزاده، م.، امّی، ف.، (1395). ”بررسی عددی جریان گازها در شیپوره خروجی یک موتور اسکرمجت“، شانزدهمین کنفرانس بین­المللی انجمن هوافضای ایران، تهران، دانشگاه خواجه نصیرالدین طوسی، 3 تا 5 اسفند. 

[4] McClinton, C., Rausch, D., Sitz, J., Reukauf, P., (2001). “Hyper-X Program Status”, 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA.

[5] Harsha, P., Keel, L., Castrogiovanni, A., Sherrill, R. (2005). “X-43A Vehicle Design and Manufacture”, AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, Capua, Italy.

[6] Hank, J., Murphy, J., Mutzman, R., (2008). “The X-51A Scramjet Engine Flight Demonstration Program”, 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.

[7] Seiner, J.M., Dash, S.M., Kenzakowski, D.C., (2001). “Historical Survey on Enhanced Mixing in Scramjet Engines”, Journal of Propulsion and Power Vol.17, No.6, pp. 1273-1286. 

[8] Heiser, W.H., Pratt, D.T., (1994). “Hypersonic Airbreathing Propulsion”, AIAA Educational Series.

[9] Ben-Yakar, A., Mungal, M.G., Hanson, R.K., (2006). “Time Evolution and Mixing Characteristics of Hydrogen and Ethylene Transverse Jets in Supersonic Crossflows”, Physics of Fluids Vol.18, No. 2, pp. 026101.

[10] Gruber, M., Nejadt, A.S., Chen, T.H., Dutton, J.C., (1995). “Mixing and Penetration Studies of Sonic Jets in a Mach 2 Freestream”, Journal of Propulsion and Power, Vol. 11, No. 2, pp. 315-323.

[11] Manna, P., Chakraborty, D., (2005). “Numerical Investigation of Transverse Sonic Injection in a Non-Reacting Supersonic Combustor”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 219, No. 3, pp. 205-215. 

[12] Sakima, F., Arai, T., Kasahara, J., Murakoshi, M., Ami, T., He, F., Sugiyama, H., (2004). “Mixing of a Hydrogen Jet from a Wedge Shaped Injector into a Supersonic Cross Flow”, Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 46, No. 154, pp. 217-223.

[13] Kuratani, N., Ikeda, Y., Nakajima, T., Tomioka, S., Kuratani, N., (2002). “Mixing Characteristics of Normal Injection into a Supersonic Backward-facing Step Flow Measured with PIV”, 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA. 

[14] Hassan, E., Boles, J., Aono, H., Davis, D., Shyy, W., (2013). “Supersonic Jet and Crossflow Interaction: Computational Modeling”, Progress in Aerospace Sciences, Vol. 57, pp. 1-24.

[15] Xu, H.-Y., Yang, H., Ye, Z.Y., Zhang, D., (2017). “Numerical Study of the Discrete Staggered Staged Sonic Jet Interaction in a Supersonic Crossflow”, 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China.

[16] Hersch, M., Povinelli, F.P., Povinelli, L.A., (1970). “Optical Study of Sonic and Supersonic Jet Penetration from a Flat Plate into a Mach 2 Airstream”, NASA TN D-5717.

[17] Abbitt III, J.D., Hartfield, R.J., McDaniel, J.C., (1991). “Mole-fraction Imaging of Transverse Injection in a Ducted Supersonic Flow”, AIAA journal, Vol. 29, No. 3, pp. 431-435.

[18] Papamoschou, D., Hubbard, D.G., Lin, M., (1991). “Observations of Supersonic Transverse Jets”, Space Manufacturing 8-Energy and Materials from Space.

[19] Yamauchi, K., Kitadani, H., Masuya, G., Tomioka, S., and Izumikawa, M. (1999). “Penetration of Jets Injected Behind Backward-Facing Step in Supersonic Stream”, AIAA paper 99-2106, 35th Joint Propulsion Conference and Exhibit, Los Angeles, CA, USA.   

[20] McDaniel, J.C., Raves, J., (1988). “Laser-Induced-Fluorescence Visualization of Transverse Gaseous Injection in a Nonreacting Supersonic Combustor”, Journal of Propulsion and Power, Vol. 4 No. 6, pp. 591-597.

[21] McDaniel, J.C., Fletcher, D.G., Hartfield, R.J., Hollo, S.D., (1992). “Staged Transverse Injection into Mach 2 Flow behind a Rearward Facing Step: A 3-D Compressible Test Case for Hypersonic Combustor CFD Validation”, AIAA paper 92-0827.

[22] Liu, Q., Baccarella, D., McGann, B., Lee, T., Do, H., (2018). “Experimental Investigation of Single Jet and Dual Jet Injection in a Supersonic Combustor”, 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida.  

[23] Yokota, K., Kaji, S., (1996). “The Three-Dimensional Supersonic Flow and Mixing Fields With a Perpendicular Air Injection From a Finite Length Slit”, Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 39, No. 124, pp. 173-183.

[24] Yokota, K., Kaji, S., (1996). “The Two-Dimensional Supersonic Flow and Mixing Field With a Perpendicular Injection”, Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 39, No. 123, pp. 28-42.  

[25] Won, S.-H., Jeung, I.S., Parent, B., Choi, J.Y., (2010). “Numerical Investigation of Transverse Hydrogen Jet into Supersonic Crossflow Using Detached-Eddy Simulation”, AIAA journal, Vol. 48, No. 6, pp. 1047-1058.

[26] Chakraborty, D., Roychowdhury, A.P., Ashok, V. and Kumar, P., (2003). “Numerical Investigation of Staged Transverse Sonic Injection in Mach 2 Stream in Confined Environment”, The Aeronautical Journal, Vol. 107, No. 1078, pp. 719-729.  

[27] Sriram, A., Chakraborty, D., (2011). “Numerical Exploration of Staged Transverse Injection into Confined Supersonic”, Defence Science Journal, Vol. 61, No. 1, pp. 3-11.

[28] Sun, M.B., Hu, Z.W., (2018). “Generation of Upper Trailing Counter-Rotating Vortices of a Sonic Jet in a Supersonic Crossflow”, AIAA Journal, pp. 1-13.

[29] Sankaran, A., Sundararaj, K., Santhanakrishnan, R., (2017). “Certain Investigations of Numerical Simulation on Supersonic Combustor of Staged Transverse Injection behind a Backward Facing Step with Cavity”, Asian Journal of Research in Social Sciences and Humanities, Vol. 7, No. 2, pp. 603-614.

[30] Mishra, D., Sridhar, K., (2010). “Numerical Study of Effect of Fuel Injection Angle on the Performance of A 2D Supersonic Cavity Combustor” Journal of Aerospace Engineering, Vol. 25, No. 2, pp. 161-167.

[31] Krishna K.M., Natesan, M., (2015). “Numerical Simulation of Mixing Enhancement of Cavity Based Transverse Injection in a Scramjet Engine” Journal of Applied Sciences Research, Vol. 11, No. 23, pp. 51-57, December.

[32] Wilcox, D.C., (1998). “Turbulence Modeling for CFD”, DCW industries La Canada, CA.

[33] Payne, J., Roy, C., Beresh, S., (2001). “A Comparison of Turbulence Models for a Supersonic Jet in Transonic Crossflow”, 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. 

[34] Viti, V., Schetz, J., Neel, R., (2005). “Comparison of First and Second Order Turbulence Models for a Jet/3D Ramp Combination in Supersonic Flow”, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA.   

[35] Versteeg, H.K., & Malalasekera, W., (2007). “An introduction to computational fluid dynamics: the finite volume method”, Pearson Education, John Wiley & Sons, Inc.

[36] ابراهیمی، ا.، حاجیلو، ع.، راد، م.، (1392). ”مدل­سازی عددی جریان اطراف شناورکاتاماران و محاسبه مقاومت هیدرودینامیکی آن به روش دینامیک سیالات محاسباتی“، مجله مدل سازی در مهندسی، سال یازدهم، شماره 32، صفحه 41-29، بهار.

[37] حیدری­نژاد، ق.، جدیدی، ا.، (1396). ”شبیه­سازی نحوه پخش آلودگی در پشت یک ساختمان با استفاده از یک روش RANS-LES­“، مجله مدلسازی در مهندسی، سال پانزدهم، شماره 49، صفحه 27-17، تابستان.

[38] طاهریان، م.، سعدالدین، س.، ولی­پور، م.، (1395). ”شبیه سازی جت اجکتور مادون صوت“، مجله مدل سازی در مهندسی، سال چهاردهم، شماره 45، صفحه 78-63، تابستان.

[39] شجاعی­فرد، م.، طحانی، م.، (1391). ”مقدمه­ای بر جریان­های آشفته و مدلسازی­های آن“، چاپ اول، مرکز انتشارات دانشگاه علم و صنعت.

[40] Ruiz, A.M., Lacaze, G., Oefelein, J.C., (2015). “Flow topologies and turbulence scales in a jet-in-cross-flow”, Journal of Physics of Fluids, Vol. 27, No. 4, pp. 1-41. 

[41] Cortelezzi, L., Karagozian, A.R., (2001). “On the formation of the counter-rotating vortex pair in transverse jets”, Journal of Fluid Mechanics, Vol. 446, pp.347-373.

[42] Coussement, A., Gicquel, O., Degrez, G., (2012). “Large eddy simulation of a pulsed jet in cross-flow”, Journal of fluid mechanics, Vol. 695, pp.1-34.

[43] Amano, R.S., Sun. D., (2004). “Numerical simulation of supersonic flowfield with secondary injection”, in The 24th International Congress of the Aeronautical Sciences (ICAS), Yokohama, p. 1.

[44] Dharavath, M., Mana, P., Chakraborty, D., (2018). “Computational Study of Transverse Slot Injection in Supersonic Flow”, Defence Science Journal, Vol. 68, No. 2, pp. 121-128.