مدلسازی مسئله انتقال حرارت یک بعدی معکوس با استفاده از روش نقطه گذاری به همراه موجک‌های هآر

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشگاه شهید بهشتی

2 دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی

چکیده

در این مقاله، یک روش عددی که ترکیبی از روش نقطه‌گذاری به همراه موجک هآر و روش پایدارسازی تیخونوف می‌باشد، برای حل مسئله انتقال حرارت معکوس یک بعدی استفاده شده است. به منظور تطبیق مسئله انتقال حرارت با واقعیت، داده‌های ورودی به صورت داده‌های نویزدار با خطای مابین ۱ الی ۵٪ مورد استفاده قرار گرفته‌اند. هم‌چنین در این پژوهش از توابع هآر علاوه بر تخمین توابع مجهول، به منظور نویزگیری خروجی نیز استفاده شده است. از نتایج حاصل شده دو مزیت اصلی روش مکرر اثبات شده است، اول دقت این روش در تخمین شروط مرزی مجهول و دوم سرعت پردازش که به علت عدم نیاز توابع موجکی به نقطه‌گذاری با فواصل کم می‌باشد. این مطلب بیان‌گر این امر می‌باشد که این روش دارای سرعت بالائی نیز می‌باشد. با توجه به نتایج کسب شده می‌توان اذعان کرد که روش حاضر با اعمال خطای کوچک در داده‌های ورودی پایداری خود را حفظ نموده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling the one-dimensional inverse heat transfer problem using a Haar wavelet collocation approach

نویسندگان [English]

  • Ali Jahangiri 1
  • Samira Mohammadi 2
1 shahid beheshti university
2 Faculty of Mechanical & Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran
چکیده [English]

In this paper, a numerical method is used to solve the one-dimensional inverse heat transfer problem, which is a combination of punctuation with wavelet collocation method and Tikhonov's method of stabilization. In order to validation of the heat transfer problem, the input data is used as including noise data ranging from 1 to 5%. Also, in this study, the Haar functions, in addition to estimating the unknown functions, are also used to reduce output noise. From the results, two main advantages of the repeated method have been proven, first, the precision of this method in estimating the unknown boundary condition and the second processing speed due to the lack of need for wavelet functions to be collocated at low intervals. This suggests that this method is also high speed. According to the obtained results it can be admitted that the present method maintains its sustainability with small error in input data.

کلیدواژه‌ها [English]

  • Ill-pose inverse problem
  • Haar method
  • Tikhonov's Stabilization Method
  • Including noise input data
[1] M. Abtahi, R. Pourgholi and A. Shidfar, "Existence and uniqueness of solution for a two dimensional nonlinear inverse diffusion problem", Nonlinear Analysis | Theory, Methods and Applications, Vol. 74, 2011, pp. 2462–2467.
[2] O.M. Alifanov, Inverse Heat Transfer Problems, Springer, New York, 2012.
[3] J.M.G. Cabeza, J.A.M. Garcia and A.C. Rodriguez, "A sequential algorithm of inverse heat conduction problems using singular value decomposition", International Journal of Thermal Sciences, Vol. 44, 2005, pp. 235–244.
[4] C.H. Huang and Y.L. Tsai, "A transient 3-D inverse problem in imaging the time- dependent local heat transfer coefficients for plate fin", Applied Thermal Engineering, Vol. 25, 2005, pp. 2478–2495.
[5] C.H. Huanga, C.Y. Yeha and H.R B. Orlande, "A nonlinear inverse problem in simultaneously estimating the heat and mass production rates for a chemically reacting fluid", Chemical Engineering Science, Vol. 58, No.16, 2003, pp. 3741–3752.
[6] R. Pourgholi, N. Azizi, Y.S. Gasimov, F. Aliev and H.K. Khalafi, "Removal of numerical instability in the solution of an inverse heat conduction problem", Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 6, 2009, pp. 2664–2669.
[7] R. Pourgholi and M. Rostamian, "A numerical technique for solving IHCPs using Tikhonov regularization method", Applied Mathematical Modelling, Vol. 34, No. 8, 2010, pp. 2102–2110.
[8] R. Pourgholi, M. Rostamian and M. Emamjome, "A numerical method for solving a nonlinear inverse parabolic problem", Inverse Problems in Science and Engineering, Vol. 18, No. 8, 2010, pp. 1151–1164.
[9] K.K. Sun, B.S. Jung and W.L. Lee, "An inverse estimation of surface temperature using the maximum entropy method", International Journal of Heat and Mass Transfer, Vol. 34, 2007, pp. 37–44.
[10] J. Zhou, Y. Zhang, J.K. Chen and Z.C. Feng, "Inverse heat conduction in a composite slab With pyrolysis effect and temperature-dependent thermophysical properties", International Journal of Heat and Mass Transfer, Vol. 132 No. 3, 2010, pp. 034502.
[11] G. Hariharan, K. Kannan and K.R. Sharma,"Haar wavelet method for solving Fisher’s equation", Applied Mathematics and Computation, Vol. 211, 2009, pp. 284–292.
[12] C.H. Hsiao and W.J. Wang, "Haar wavelet approach to nonlinear stiff systems", Mathematics and Computers in Simulation, Vol. 57, 2001, pp. 347–353.
[13] R. Kalpana and B.S. Raja, "Haar wavelet method for the analysis of transistor circuits", International Journal of Electronics and Communications, (AEU) Vol. 61, 2001, pp. 589–594.
[14] R. Pourgholi, N. Tavallaie and S. Foadian, “Applications of Haar basis method for solving some ill-posed inverse problems”, Springer Science+Business Media, LLC. 2012.
[ 15] محمد اکبری، فرشاد کوثری، سیف الله سعدالدین و داود طغرایی سمیرمیT، " حل تحلیلی میدان دما برای یک صفحه تخت تحت شرط مرزی جابه جایی با استفاده از معادله انتقال حرارت غیر فوریهای-مدل کاتانئو"، نشریه مدلسازی در مهندسی، دوره11  ، شماره32 ، بهار 1392 ، صفحه 81 - 69 .
[16] H. Molhem and R. Pourgholi, "A numerical algorithm for solving a one-dimensional inverse heat conduction problem", Journal of Mathematics and Statistics, Vol. 4, No. 1, 2008, pp. 60–63.
[ 17] روح الله فیروزنیا و نیما امجدی، » پیش بینی بار کوتاه مدت با استفاده از تجزیه سری زمانی و شبکه عصبی «، نشریه مدلسازی در مهندسی، دوره 2 ، شماره 16 ، بهار 1387 ، صفحه 32 - 23 .
[18] U.I. Siraj, B. Šarler, I. Aziz and F.I. Haq, "Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems". International Journal of Thermal Sciences, Vol. 50, No. 5, 2011, pp. 686–697.
[19] C.H. Hsiao and W.J. Wang, "Haar wavelet approach to nonlinear stiff systems". Mathematics and Computers in Simulation, Vol. 57, 2001, pp. 347–353.
[20] C.H. Hsiao, "Haar wavelet approach to linear stiff systems", Mathematics and Computers in Simulation, Vol. 64, 2004, pp. 561–567.
[21] U. Lepik, "Numerical solution of differential equations using Haar wavelets", Mathematics and Computers in Simulation, Vol. 68, 2005, pp. 127–143.
[22] I. Singh and S.H. Kumar, "Simlpe iterative technique for solving some models of nonlinear partial differential equations using HAAR WAVELET", Italian journal of pure and applied mathematics, 2016, pp. 335-34.
[23] A. Shah, R. Abass and L. Debnath, "Numerical Solution of Fractional Differential Equations Using Haar Wavelet Operational Matrix Method", International Journal of Applied and Computational Mathematics, 2016.
[24] I. Singh, S. Arora and S. Kumar, "Numerical solution of wave equation using HAAR WAVELET", International Journal of Pure and Applied Mathematics, Vol. 98, No. 4, 2015, pp.457-469.
[25] U. Lepik, "Numerical solution of evolution equations by the Haar wavelet method", Applied Mathematics and Computation, Vol. 185, 2007, pp. 695-704.
[ 26] امیر عزالدین، حسین نادرپور، علی خیرالدین و غلامرضا قدرتی امیری، " تشخیص محل و میزان ترک در تیرها با استفاده از تبدیل موجک" نشریه مدلسازی در مهندسی، دوره 12 ، شماره 39 ، زمستان 1393 ، صفحه 11 - 1 .
[27] A.S.A. Alghamdi, "Inverse Estimation of Boundary Heat Flux for Heat Conduction Model", Journal of King Abdulaziz University-Science, Vol. 21, No.1, 2010, pp. 73-95.