طراحی بهینه، مدلسازی و ساخت یک ارتز فعال خارجی جهت تونبخشی اندام تحتانی افراد ناتوان

نوع مقاله : مقاله مکانیک

نویسندگان

1 گروه مکانیک، دانشکده مکانیک، دانشگاه آزاد خمینی شهر، اصفهان، ایران

2 گروه مکانیک/دانشکده مکانیک/دانشگاه آزاد خمینی شهر/اصفهان/ایران

3 اُرتوپدی فنی، دانشگاه علوم پزشکی شیراز، شیراز

چکیده

امروزه با پیشرفت علوم مهندسی در زمینه‌ی پزشکی، استفاده از سیستم‌های توانبخشی رباتیکی جهت درمان ناتوانی حرکتی بسیار مورد توجه قرار گرفته است. برخی از سیستم‌های رباتیکی برای احیای مکانیک و اصلاح الگوی حرکتی افراد ناتوان از جمله مبتلایان به سکته‌ی مغزی به‌کار گرفته شده‌اند و نتایج امیدوارکننده‌ای از آنها حاصل شده است. محور اصلی این تحقیق نیز، کمک به تأمین استقلال حرکتی این بیماران بوده تا ضمن حذف فیزیوتراپ، امکان بهبودی و اصلاح حرکت در اعضایی که دچار فقر حرکتی شده‌اند، فراهم شود. هدف اصلی در این مقاله، طراحی و ساخت یک اُرتز فعال خارجی یک درجه آزادی مبتنی بر ساختار مکانیزم چهارمیله‌ای برای ایجاد حرکت مطلوب پای بیمار می‌باشد. در همین راستا، طراحی بهینه‌ی سینماتیکی مکانیزم بر مبنای ایجاد حرکتی مشابه با الگوی صحیح راه رفتن برای پای بیمار انجام شده است. همچنین پس از استخراج معادلات حرکت ربات توانبخش، توان و گشتاور بهینه‌ی موتور الکتریکی محرک مکانیزم با حل دینامیک معکوس ربات، محاسبه و تعیین می‌شود. پس از طراحی و ساخت یک نمونه‌ی اولیه از اُرتز پیشنهادی، کارایی و عملکرد آن بر روی یک کاربر سالم مورد ارزیابی و بررسی قرار گرفته است. آزمایشات به عمل آمده‌ نشان می‌دهد که این دستگاه، حرکت شبیه‌سازی شده‌ی بهینه را برای کاربر فراهم می‌نماید. به‌علاوه نتایج تست ضربان قلب کاربر، گویای کاهش قابل توجه سرعت ضربان قلب کاربر در هنگام استفاده از اُرتز نسبت به حالت عادی ( بدون اتصال دستگاه) و به دنبال آن کاهش مصرف انرژی کاربر می-باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design, Modeling and Fabrication of an Active External Orthosis for Rehabilitation of Lower of Peolple with Disability

نویسندگان [English]

  • faezeh jahanshah 1
  • ali mokhtarian 2
  • Mohammad Taghi Karimi 3
1 Department of Mechanical Engineering, Khomeinishahr Branch Islamic Azad University, Khomeinishahr/Isfahan, Iran
2 . Department of Mechanical Engineering, Khomeinishahr Branch Islamic Azad University, Khomeinishahr/Isfahan, Iran
3 Department of Orthotics and Prosthetics, Shiraz University of Medical Sciences, Shiraz, Iran
چکیده [English]

Today, with advancements of engineering sciences in the medical field, the use of robotic rehabilitation systems for treating motor disabilities has been widely considered. There are some robotic systems for mechanical rehabilitation and revival of motion pattern of stroke patients. In this research, the main purpose is to designing a new robotic system with one degree of freedom (DOF) to move lower legs of patient without any physiotherapist’s help during rehabilitation. For presented model of system, an optimal kinematic design according to the normal pattern of human motion has been performed. Also, the equations of motion for rehabilitation system have been extracted and the minimum torque of the actuator of the mechanism with solution of inverse dynamic problem has been obtained. In next step, the prototype of orthosis is fabricated and its function is tested on a healthy subject. The experiments show that the proposed device provides optimum simulated motion for the user. In addition, the results of test of heart beat indicate a significant reduction in heart rate and energy consumption of user during using orthosis system comparing to normal motion (without device).

کلیدواژه‌ها [English]

  • Active Orthosis
  • Rehabilitation
  • Optimization
  • Lower Limbs
[1] ن. امینی، ح. باقری، ا. باغستانی، م. عبدالوهاب، پ. راجی، م. جلیلی و ع. منتظری ، "بررسی تأثیر روش محدودیت درمانی حرکتی بر روی کیفیت زندگی، عملکرد و دامنۀ حرکتی اندام فوقانی بیماران سکتۀ مغزی بزرگسال« ،مجله توانبخشی نوین، دوره6، شماره 3 ، پاییز 1391 ، صفحه 4 - 1 .
[ 2 [ ا. برزکار، "ساختار و عملکرد سیستم عصبی- عضلانی"، چاپ اول، ایران، 1385 .
[ 3 [ ا. سلطانزاده، "بیماریهای مغز و اعصاب و عضلات"، چاپ دوم، انتشارات جعفری، ایران، 1376 .
[4] A.M. Dollar and H. Herr,"Lower-extrimity exoskeletons and active orthoses: challenges and state-of-the-art", IEEE Transactions on Robotics, Vol. 24, No. 1, 2008, pp. 144-158.
[5] Y. Saito, K. Kikuchi, H. Negoto, T. Oshima and T. Haneyoshi, “Development of externally powered lower limb orthosis with bilateral-servo actuator”, Proceeding of 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June-1 July 2005.
[6] S.K. Banala, A. Kulpe and S.K. Agrawal, “A powered leg orthosis for gait rehabilitation of motor-impaired patients”, Proceeding of International Conference on Robotics and Automation, Roma, Italy, 10-14 April 2007.
[7] B. Shah, D. McNally, K. Patel, S. Frone and S. Sutaria, “Design and fabrication of an intuitive leg assist device to address lower extremity weakness”, Proceeding of Annual Northeast Bioengineering Conference, Troy, NY, USA, 1-3 April 2011.
[8] K.A. Shorter, Y. Li, E.A. Morris, G.A. Kogler and E.T. Hsiao-Wecksler, “Experimental evaluation of a portable powered ankle-foot orthosis”, Proceeding of Annual International Conference of Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August-3 September 2011.
[9] Z. Matjacic, "Apparatus for dynamic balance training during treadmill walking", Journal of Rehabilitation Medicine, Vol. 39, No. 1, 2007, pp. 91-94.
[10] A. Fattah and S.K. Agrawal, “Gravity balancing of human leg using an external orthosis”, Proceeding of International Conference on Robotics and Automation, Roma, Italy, April 2007.
[11] S. Krut, M. Benoit, E. Dombre, F. Pierrot and Moonwalker, “a lower limb exoskeleton able to sustain bodyweight using a passive force balancer”, Proceeding of International Conference on Robotics and Automation, Anchorage, AK, USA, May 2010.
[12] A. Mokhtarian, A. Fattah and S.K. Agrawal, "A passive swing-assistive planar external orthosis for gait training on treadmill", Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 37, No. 1, 2015, pp. 1-10.
[13] A. Nilsson1, K.S Vreede, V. Haglund, H. Kawamoto, Y. Sankai and J. Borg, "Gait training early after stroke with a new exoskeleton – the hybrid assistive limb: a study of safety and feasibility", Nilsson et al. Journal of NeuroEngineering and Rehabilitation, 2014.
[14] W. Hassani, S. Mohammedn, H. Rifaï and Y. Amirat, "Powered orthosis for lower limb movements assistance and rehabilitation", Control Engineering Practice, Vol. 26, 2014, pp. 245-253.
[ 15 د. شاهی مریدی، ح. اصغرنیا و م. شیخ فتح اللهی، "فراوانی اختلالات حسّی و حرکتی در سه ماهه اول بعد از وقوع سکتۀ مغزی در مراجعین به مرکز آموزشی - درمانی حضرت علی ابن ابی طالب )ع( رفسنجان« ، مجلۀ علمی دانشگاه علوم پزشکی رفسنجان، دوره 1 ، شماره 4 ، تابستان 1381 ، صفحه 251 - 241 .
[16] G.H. Martin, Kinematics and Dynamics of Machines, 2nd ed., Waveland Press Inc, 2002.
[ 17] م. سعادت فومنی، م. خطیبی، م. مرادی و م. کارآموز مهدی آبادی، " تحلیل سینماتیکی- سینتیکی پیمایش مستقیم الخط ربات انسان نما «، مجلۀ مدلسازی در مهندسی، دوره 3 ، شماره 17 ، تابستان 1388 .
[18] م. مرادی، ا. نکوبین و س. آزادی، » طراحی مسیر بهینه و بالاسینگ تکراری برای ربات متحرک در حرکات سریع «، مجلۀ مدلسازی در مهندسی، دوره 14 ، شماره 47 ، زمستان 1395 ، صفحه 153 - 141 .
[ 19] س.ع.ا. حسینی و س.ش. حسینی، " طراحی پایدارترین حرکت ربات متحرک در مسیر مشخص"،مجلۀ مدلسازی در مهندسی، دوره 11 ، شماره 33 ، تابستان 1392 ، صفحه 14 - 1 .
[ 20 [ س.م. حسینی و ب. زهرایی، "الگوریتم ژنتیک و بهینه سازی مهندسی"، چاپ اول، انتشارات گوتنبرگ، ایران، 1388 .
[21] J.S. Arora, Introduction to Optimum Design, 4th ed., Cambridge: Academic Press, 2017.
[22] C. Kirtley, Clinical Gait Analysis: Theory and Practice, 1st ed., London: Churchill Livingstone, 2006.
[ 23 طراحی یک اُرتز لگنی غیرفعال نوین جهت توانبخشی راه رفتن با بهره گیری از مدل دینامیکی مجله مهندسی مکانیک مدرس، شماره ،» سه بعدی 9 ، سال 1392 ، صفحه 125 - 111 .
[ 24] ع. مختاریان، م.ت. کریمی و ا. کریمی، » بررسی اثر دینامیکی ارتفاع پاشنه کفش بر روی مفاصل پایینتنه در حین راه رفتن « ، مجله مهندسی مکانیک مدرس، شماره 4 ، سال 1396 ، صفحه 409 - 399 .
[25] H. Baruh, Analytical Dynamics, 1st ed., New York: McGraw-Hill, 1998.
[26] J. Wang, C.M. Gosselin and L. Cheng, "Modeling and simulation of robotic systems with closed kinematic chains using the virtual spring approach", Multibody System Dynamics, Vol. 7, No. 2, 2002, pp. 145-170.
[27] D.A. Winter, Biomechanics and motor control of human movement, 4th ed., New York: Wiley, 2009.
[28] J. Rose and J.G. Gamble, Human Walking, 3rd ed., Baltimore: Williams and Wilkins, 2005.
[29] C. Wu,"Physiological cost index of walking for normal adults", Journal of Special Education and Rehabilitation, Vol. 96, No. 17, 2007, pp. 1-19.