آنالیز حساسیت و عدم قطعیت ضریب تصحیح دانسیته گاز طبیعی بر اساس مدل سازی استاندارد AGA8 نسبت به پارامترهای عملیاتی و محیطی

نوع مقاله: مقاله شیمی

نویسندگان

دانشکده مهندسی نفت و پتروشیمی، دانشگاه رازی، کرمانشاه، ایران، صندوق پستی 6714967346

چکیده

محاسبه دقیق شدت جریان گاز طبیعی عامل بسیار موثری در بخش اقتصادی، کنترل شرایط عملیاتی، نگهداری تجهیزات و ... در صنایع گاز کشورهای وارد و صادر کننده آن می‌باشد. امروزه در صنایع مرتبط با گاز کشور، برآورد شدت جریان گاز طبیعی به کمک محاسبه ضریب تصحیح دانسیته آن (NG-DCF ) با استفاده از معادلات حالت به عنوان روشی مقرون به صرفه انجام می‌پذیرد. دسترسی همیشگی به اطلاعات ورودی مورد نیاز معادلات حالت به ویژه ترکیب درصد کامل اجزاء گاز نیاز به هزینه‌های گزافی دارد از این رو گاهی از اطلاعات تخمینی به عنوان عوامل ورودی مدل استفاده می‌شود. بنابراین با توجه به امکان تاثیر پذیری دقت محاسبه NG-DCF از این عوامل، شناخت و تحلیل روند اثرگذاری هریک از آن‌ها بر خروجی مدل، بررسی میزان حساسیت پذیری خروجی مدل از داده‌های ورودی و نیز تعیین عدم قطعیت خروجی مدل ضرورت دارد. در این مطالعه ابتدا NG-DCF توسط معادله حالت استاندارد AGA8-DCM به عنوان روشی دقیق، مدل شده سپس برای محاسبه آنالیز حساسیت و عدم قطعیت NG-DCF از روش‌های مختلف تحلیلی و عددی استفاده شده است تا از نتایج حاصل برای احراز از خطای تخمین آن سود جست. نتایج آنالیزهای حساسیت نشان داد که پس از فشار عملیاتی نسبی و دمای عملیاتی، ترکیب درصد متان، اتان و نیتروژن گاز طبیعی موثرترین عوامل خطی بر NG-DCF است. همچنین تغییرات فشار محیط که غالبا مورد اغماض قرار می‌گیرد به عنوان یکی از عوامل موثر بر NG-DCF شناخته شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sensitivity analysis and uncertainty of density correction factor of natural gas based on the AGA8-standard modeling to operational and environmental parameters

نویسندگان [English]

  • Fatemeh Bashipour
  • poorya ghaderian
Petroleum and Chemical engineering, Razi University, Kermanshah, Iran
چکیده [English]

The exact calculation of the flow rate of natural gas is a very effective factor in economic, operating conditions control, equipment maintenance, and etc., of the gas industry of the importing and exporting countries. Today, in the country's gas industry, the flow rate is estimated by natural gas density correction factor (NG-DCF) calculated by the equations of state as a cost-effective method. Permanent access to input data required for equations of state, in particular, the composition of all gas components, requires high costs, hence the information estimated as model input data is mostly applied. Since the calculation accuracy of the NG-DCF can be affected by the model inputs, it is necessary to recognize and analyze the effect of each of them on the model output, to investigate the model output sensitivity from the model inputs, and to determine the uncertainty of the model output. In this study firstly, the NG-DCF was modeled by a precise-standard equation of state, AGA8-DCM (Detail Characterization Method), then various analytical and numerical methods have been applied to calculate the sensitivity analysis and uncertainty of the NG-DCF to avoid from estimation error. The results of the sensitivity analyses showed that after the gauge operating pressure and operating temperature, the composition percentage of methane, ethane and nitrogen in natural gas are the most effective linear parameters on the NG-DCF. Also, the atmospheric pressure changes, which are often neglected, are known as one of the parameters affecting the NG-DCF.

کلیدواژه‌ها [English]

  • Natural gas density
  • Correction factor
  • modeling
  • AGA8-DCM standard
  • Sensitivity analysis
  • Uncertainty

1[ امیرحسین مرادی، مصطفی مافی و منصور خانگی، "آنالیز حساسیت چرخه های مایع سازی گاز طبیعی با کاربری قله سایی نسبت به متغیرهای محیطی و عملیاتی"، مجله مهندسی مکانیک مدرس، دوره 15، شماره 6، شهریور 1394، صفحه 298-287.

[2]        M. B. Standing and D. L. Katz, "Density of Natural Gases", Transactions of the AIME, Vol. 146, December 1942, pp. 140-149.

[3]        D. Beggs and J. Brill, "A Study of Two-Phase Flow in Inclined Pipes", Journal of Petroleum Technology, Vol. 25, NO. 5, 1973, pp. 607–617.

[4]        K. R. Hall and L. J. Yarborough, "A new equation-of State for z-factor Calculations", Oil and Gas Journal, 1973, pp. 82-92.

[5]        P. M. Dranchuk, R. A. Purvis, and D. B. Robinson, "Computer Calculations of  Natural Gas compressibility factors Using the Standing and Katz Correction",Institute  of Petroleum Technical Series, NO. IP 74-008, 1974.

[6]        P. M. Dranchuk, and J. H. Abu-Kassem, "Calculation of z-factors for Natural Gases Using Equation-of-State", Journal of Canadian Petroleum Technology, Vol.14, 1975, pp 34-36.

[7]        R.W. Hankinson, L. K. Thomas, and K. A. Phillips, "Predict Natural Gas Properties", Hydrocarbon Processing , 1969, pp. 106-108.

[8]        B. Berry, AGA Calculations – 1985 Standard VS 1992 Standard, ABB Automation, Totalflow Bartlesville, OK , 1992.

[9]        American Gas Association, Compressibility Factor of Natural Gas and Other Related Hydrocarbon Gases, Operating Section 1515, Wilson Boulevard Arlington Virginia 22209, Catalog No. XQ9212, 2nd ed., 1992.

[10]      M. Cimondi and J. Mollerup, "Development and application of a three parameter RK_PR Equation of state", Fluid phase Equilibria, Vol. 232, 2005, pp.74-89.

[11]      D. Hou, H. Deng, H. Zhang, K. Li, L. Sun, and Y. Pan, "Phase Behavior and Physical Parameters of Natural Gas Mixture with CO2", Journal of  Chemistry, Vol. 2015, Article ID 873718, 2015.

[12]      F. Varzandeh, E. H. Stenby, and W.Yan, "Compartment of GERG-2008 and simpler EoS models in calculation of phase equilibria and phicical properties of natural gas related systems", Fluid Phase Equilibria , Vol. 434, 2016, pp.21-43.

[13]      I. I. Azubuike, S. S. Ikiensikimama, and O. D. Orodu, "Natural Gas Compressibility Factor Measurement and Evaluation for High Pressure High Temperature Gas Reservoirs", International Journal of Scientific & Engineering Research, Vol. 7, NO. 7, July 2016, pp. 1173-1181.

[14]      P. Ahmadi, A. Chapoy, B. Tohidi, "Density, speed of sound and derived thermodynamic properties of a synthetic natural gas", Journal of Natural Gas Science and Engineering, Vol. 40, 2017, pp. 249-266.

[15]      M. Farzaneh-Gord, B. Mohseni-Gharyehsafa, A. Toikka, I. Zvereva, "Sensitivity of Natural Gas Flow Measurement to AGA8 or GERG2008 Equation of State Utilization", Journal of Natural Gas Science and Engineering, Vol. 57, 2018, pp. 305-321.

]16[ حسین بدیعی، احمد امامی، رئوف غلامی و مهیار یوسفی، "استنتاج پارامترهای تاثیرگذار در شاخص سودآوری پروژههای سرمایه-گذاری ریسکپذیر صنعتی و معدنی با استفاده از تحلیل"، مجله مهندسی مالی و مدیریت اوراق بهادار، دوره دوم، شماره هشتم، پاییز1390، صفحه 169-155.

[17]      F. Pianosi, T. Wagener, "Distribution-based sensitivity analysis from a generic input-output sample", Environmental Modelling and Software, Vol. 108, 2018, pp. 197–207.

]18[ محمد مهدی جلیلی، سعید ابراهیمی و ندا همت، "شبیه سازی و آنالیز حساسیت ارتعاشات غیر خطی حرکت غلت شناور"، مجله مدل سازی در مهندسی، سال پانزدهم، شماره 49، تابستان 1396، صفحه 125-137.

[19]      H. Christopher Frey and S.R Patil, "Identification and review of sensitivity analysis methods", Risk analysis, Vol. 22, NO. 3, 2002, pp.553-578.

[20]      G. E. Box and K. Wilson, "On the experimental attainment of optimum conditions", Journal of the Royal Statistical Society. Series B (Methodological), Vol. 13, 1951, pp. 1-45.

[21]      R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response surface methodology, Process and product optimization using designed experiments, 3thed., John Wiley & Sons, New Jersey, 2009.

]22[ پرویز تاجداری و کیانوش فتحی واجارگاه، مقدمه­ای بر آمار، انتشارات اتا، شماره 41، 1388.

 [23] A. Balaram Naik, A.Chennakeshava Reddy, Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA), Vol. 8, 2018, pp. 327-339.

]24[ علیرضا نگهبان، پردازش داده ها با Minitab نگارش 13، انتشارات جهاد دانشگاهی فارس، شیراز، 1380.

[25]      F. Bashipour and S. M. Ghoreishi, Response surface optimization of supercritical CO2 extraction of α-tocopherol from gel and skin of Aloe vera and almond leaves, The Journal of Supercritical Fluids, Vol. 95, November 2014, pp. 348-354.

]26[ منصور مرد علی­زاده، محمدرضا سلیمانی یزدی و محمدعلی سفرخانیان، "مدل­سازی و بررسی پارامترهای فرآیند جوشکاری اصطکاکی اختلاطی آلیاژ آلومینیوم 5456 با استفاده از روش رویه پاسخ"، مجله مدل سازی در مهندسی، سال دوازدهم، شماره 38، تابستان 1393، صفحه 116-103.

[27]      M. Farzaneh-Gord and H. Rahbari, "Developing novel correlations for  calculating natural gas thermodynamic properties", Chemical and Process Engineering, Vol. 32, NO. 4, 2011, pp. 435-452.

]28[ سیف الله سعدالدین و سعید رستگار، "تحلیل اگزرژی در ایستگاه تقلیل فشار گاز طبیعی دروازه شهری"، مجله مدل سازی در مهندسی، سال هشتم، شماره 22، تابستان 1389، صفحه 20-13.

[29]      C.A. Hwang, P.P. Simon, H. Hou, K.R. Hall, J.C. Holste, and K.N. Marsh, "Burnett and pycnometric (P, Vm, T) measurements for natural gas mixtures", The Journal of Chemical Thermodynamics, Vol. 29, NO. 12, 1997, pp.1455-1472.

[30] L. Čapla, P. Buryan, J. Jedelský, M. Rottner and J. Linek, "Isothermal PVT measurements on gas hydrocarbon mixtures using a vibrating-tube apparatus", The Journal of Chemical Thermodynamics, Vol. 34, NO. 5, 2002, pp. 657-667.

[31] P. Patil, S. Ejaz, M. Atilhan, D. Cristancho, J.C. Holste and K.R. Hall, "Accurate density measurements for a 91% methane natural gas-like mixture", The Journal of Chemical Thermodynamics, Vol. 39, NO. 8, 2007, pp.1157-1163.

[32]      B.Ozcelik and T.Erzurumlu, "Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm", Journal of Materials Processing Technology, Vol. 171, NO. 3, 2006, pp. 437-445.