تاثیر هندسه و سیال داخل جداره بر عملکرد حرارتی- هیدرولیکی یک کانال موجی شکل در جریان مغشوش

نوع مقاله: مقاله مکانیک

نویسندگان

1 دانشجوی دکتری ، مهندسی مکانیک ، دانشگاه آزاد تهران مرکزی

2 عضو هیئت علمی گروه مکانیک، دانشگاه آزاد اسلامی واحد تهران مرکزی

چکیده

هدف از این مطالعه عددی بررسی تاثیر هندسه و نوع سیال داخل جداره بر افزایش عملکرد حرارتی- هیدرولیکی یک کانال موجی شکل در جریان مغشوش است. کانال شامل دو ناحیه است. ناحیه اول سیال عبوری از کانال و ناحیه دوم سیال ساکن در بین جداره های کانال است. برای سیال ناحیه اول و دوم، هوا و نانو سیال دی اکسید تیتانیوم- آب انتخاب شده است. نانوسیال بصورت همگن، تک فاز و غلظت حجمی یک درصد در نظر گرفته شده است.صفحات بالا و پایین کانال تحت شار حرارتی ثابت 616 وات بر مترمربع است. عدد رینولدز جریان سیال داخل کانال بین 3700 تا 40000 است. جریان سیال مغشوش در ناحیه اول به کمک مدل k-ε استاندارد شبیه سازی شده است. اثر استفاده از نوع سیال داخل جداره کانال، زاویه و ارتفاع موج بررسی شده است. نتایج نشان می دهد اگر نانوسیال دی اکسید تیتانیوم- آب در ناحیه دوم و هوا در ناحیه اول باشد کانال بهترین عملکرد را خواهد داشت. زاویه 35 درجه به عنوان زاویه بهینه موج با بیشترین ضریب عملکرد حرارتی- هیدرولیکی در رینولدز های 12000 تا 40000 حاصل شد. با افزایش ارتفاع موج از 4 به 6 میلی متر ضریب عملکرد حرارتی- هیدرولیکی حدودا 65 تا 110 درصد افزایش می یابد. اثر ارتفاع موج بر افزایش ضریب عملکرد حرارتی- هیدرولیکی نسبت به تغییر زاویه موج بیشتر قابل توجه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of surface geometry and the fluid inside the channel wall on thermal-hydraulic performance in sinusoidal corrugated channel in the turbulent fluid flow.

نویسندگان [English]

  • Ali Salehin 1
  • Arash Mirabdolah Lavasani 2
1 Department of Mechanical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
2 Faculty Member of Islamic Azad University, Central Tehran Branch
چکیده [English]

This numerical study carried out to find the effects of wall geometry and fluid content of a sinusoidal corrugated channel of turbulent fluid flow on increasing thermal- hydraulic performance factor. The channel consisted of two zones namely, zone1 where the fluid pass through it, and zone2 where the fluid was trapped in the channel walls. . Air and TiO2-water Nano fluid were used as fluid in 1st and 2nd zones. Nano fluid was homogeneous, single-phase, with volumetric concentration of 1%. The upper and lower plates of the channel were heated with a constant heat flux of 616 W/m2. The Reynolds numbers of fluid flow of channel were 3700 to 40,000. The turbulent fluid flow in the 1st zone was simulated using the standard k-ε model. The effects of fluid type used inside the channel wall and wave angle and wave height were investigated. The results showed that when the TiO2-water nanofluid was in the 2nd zone and air passed through 1st zone, the channel performance was the best. The optimum wave angle is 35 degrees and produced the most thermal-hydraulic performance factor in 12000 to 40000 Reynolds numbers. With increasing wave height from 4 to 6 mm, the thermal-hydraulic performance coefficient increases from 65 to 110%. The effect of wave height on the increase of the thermal-hydraulic performance coefficient was more significant than the wave angle change.

کلیدواژه‌ها [English]

  • Geometry deformation
  • TiO2-water Nanofluid
  • turbulent flow
  • thermal-hydraulic performance factor
[1] J.C. Maxwell, Treatise on Electricity and Magnetism, Vol. 1, New York: Dover, 1954.

[2] S. Kumar, A. D. Kothiyal, M. S. Bisht, and A. Kumar, “Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage”, Results in physics, Vol.7, 2017, pp. 3603-3618.

[3] V. M.Job, S.R. Gunakala, “Mixed convection nanofluid flows through a grooved channel with internal heat generating solid cylinders in the presence of an applied magnetic field”, International Journal of Heat and Mass Transfer, Vol.107,  2017, pp.133-145.

[4] M. Parsaiemehr, F. Pourfattah, O. Ali akbari, D. Toghraie, G. Sheikhzadeh, “Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 96,  2018, pp. 73-84.

[5] A.A.A. Arani,  S. Sadripour, S. Kermani, “Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal–wavy mini-channel with phase shift and variable wavelength”, International Journal of Mechanical Sciences, Vol. 128, 2017, pp. 550-563.

[6] M. Sheikholeslami, M. Nimafar, and D. Ganji, “Nanofluid heat transfer between two pipes considering Brownian motion using AGM”, Alexandria engineering journal, Vol. 56, 2017, pp. 277-283.

[7] علی اکبر عباسیان آرانی، حمیدرضا احترام، علیرضا آقایی و زهرا شمس قهفرخی، " بررسی عددی جریان سیال، انتقال حرارت و تولید آنتروپی نانوسیال در جابه‌جایی توام در محفظه‌ی "Γ" شکل"، دوره 15، شماره 50، پاییز 1396، صفحه 135- 147.

[8] رضا گورکی و حسین بیکی، " بررسی CFD انتقال حرارت جابجایی اجباری نانوسیالات در یک کانال حاوی ذرات کروی شکل"، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 28-28.

[9] محمد شریفی اصل، داود طغرایی و احمد رضا عظیمیان، "شبیه سازی عددی انتقال حرارت جابه جایی در جریان مغشوش غیرنیوتنی نانوسیال در یک لوله افقی مدور"، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 10-10.

[10] حسین خراسانی زاده، علیرضا آقایی، حمیدرضا احترام،  بررسی عددی جریان سیال، انتقال حرارت و تولید انتروپی در جابه‌جایی توام نانوسیال با خواص متغیر در محفظه‌ای‌ با دو منبع گرم دایره‌ای، نشریه مدل سازی در مهندسی، دوره  14، شماره 47، زمستان 1395، صفحه 211-199.

[11] مسعود ضیایی راد، پیمان الیاسی،  بررسی عددی جریان نوسانی نانوسیال در کانال مستطیلی شکل در حالت غیردائم، نشریه مدل سازی در مهندسی،  دوره 14، شماره 44، بهار 1395، صفحه 34-21.

[12] E. Hosseinirad, and F.  Hormozi, “Performance intensification of miniature channel using wavy vortex generator and optimization by response surface methodology: MWCNT-H2O and Al2O3-H2O nanofluids as coolant fluids”, Chemical Engineering and Processing: Process Intensification, V.124, 2018, pp. 83-96.

 

[13] R. Mohebbi, M.M. Rashidi, M. Izadi, N. A. C. Sidik, and H. W. Xian, “ Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method”, International Journal of Heat and Mass Transfer, Vol.117,2018, pp. 1291-1303.

[14]J. Rostami, A. Abbassi, and J. Harting, “Heat transfer by nanofluids in wavy microchannels”, Advanced Powder Technology, Vol. 29(4), 2018, pp. 925-933.

[15]H. Brinkman, “The viscosity of concentrated suspensions and solutions”, The Journal of Chemical Physics, Vol. 20(4), 1952, pp. 571-571.

[16] FP. Incropera, DP. Dewitt. “ Fundamentals of Heat and Mass Transfer”, 5th edition, John Wiley and Sons, NewYork, 2002.

[17] P. Li, D. Zhang, Y. Xie, “Heat transfer and flow analysis of Al2O3 Water nanofluids in microchannel with dimple and protrusion”, International Journal of Heat and Mass Transfer, Vol. 73, 2014,pp. 456-467.

[18] T.K. Nandi, H. Chattopadhyay, “Numerical investigations of developing flow and heat transfer in raccoon type microchannels under inlet pulsation”, International Communications in Heat and Mass Transfer, Vol. 56, 2014,pp. 37-41.

[19]S. Eiamsa-ard, and P.Promvonge, “Numerical study on heat transfer of turbulent channel flow over periodic grooves”, International Communications in Heat and Mass Transfer, Vol. 35(7), 2008, pp. 844-852.

[20] S. M. Vanaki, and H. Mohammed, “Numerical study of nanofluid forced convection flow in channels using different shaped transverse ribs”, International Communications in Heat and Mass Transfer, Vol. 67, 2015, pp. 176-188.

[21] Y.T. Yang, H.W. Tang, B.Y. Zeng, and C. H. Wu, “Numerical simulation and optimization of turbulent nanofluids in a three-dimensional rectangular rib-grooved channel”, International Communications in Heat and Mass Transfer, Vol. 66, 2015, pp. 71-79.

[22] A. N. Al-Shamani, K. Sopian, H. Mohammed, S. Mat, M. H.  Ruslan, and A. M. Abed, “Enhancement heat transfer characteristics in the channel with Trapezoidal rib–groove using nanofluids”, Case Studies in Thermal Engineering, Vol. 5, 2015, pp. 48-58.

[23] محمد حسن شجاعی فرد، علیرضا نورپور،  دینامیک سیالات محاسباتی، چاپ هفتم، انتشارات دانشگاه علم و صنعت ایران، ایران، 1395.

[24]H. Pehlivan, I. Taymaz, Y. İslamoğlu, “Experimental study of forced convective heat transfer in a different arranged corrugated channel”, International Communications in Heat and Mass Transfer, Vol. 46, 2013, pp. 106-111

[25]M. Ahmed, N. Shuaib, M. Yusoff, “Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid”, International Journal of Heat and Mass Transfer, Vol. 55(21-11),  2012, pp. 5891-5898.

[26]M. Ahmed, M. Yusoff, N. Shuaib, “Effects of geometrical parameters on the flow and heat transfer characteristics in trapezoidal-corrugated channel using nanofluid”, International Communications in Heat and Mass Transfer, Vol. 42,  2013, pp. 69-74.

[27]H. Mohammed, A.K. Abbas, J. Sheriff, Influence of geometrical parameters and forced convective heat transfer in transversely corrugated circular tubes, International Communications in Heat and Mass Transfer, Vol. 44, 2013, pp. 116-126.