بررسی عددی رفتار انجماد درون مبدل حرارتی سه لوله‌ای حاوی مواد تغییر فاز دهنده با استفاده از فین

نوع مقاله: مقاله مکانیک

نویسندگان

1 دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل

چکیده

در این مقاله به بررسی عددی رفتار انجماد ماده تغییر فاز دهنده در یک مبدل حرارتی سه لوله‌ای دو بعدی پرداخته شده است. فضای بین پوسته و لوله‌ها با RT82 به عنوان ماده تغییر فاز دهنده پر شده است و آب به عنوان سیال گرم در لوله‌ی داخلی و خارجی جریان دارد. هدف اصلی در این مطالعه بررسی تاثیر چیدمان‌های فین و افزودن نانو ذره CuO با درصد وزنی مختلف روی فرآیند انجماد ماده تغییر فاز دهنده است. همچنین مقایسه‌ای بین مبدل حرارتی سه لوله‌ای با فین و نانو ذره و مبدل حرارتی بدون فین و بدون نانو ذره، صورت پذیرفته است. در ادامه برای بررسی اثر تغییرات دمای سیال ورودی به عنوان پارامتر جریانی، مقایسه‌ای بین مبدل‌ در دمای مختلف صورت گرفته است. همچنین مقدار انرژی ذخیره شده مورد بررسی قرار گرفته است. نتایج نشان دهنده این واقعیت است با افزودن نانو ذره زمان انجماد برای تمامی مبدل‌های بررسی شده با فین نسبت به مبدل بدون فین کاهش یافته است. همچنین نتایج نشان می‌دهد، کاهش زمان انجماد نسبت به حالت بدون فین برای چیدمان‌های لوله داخلی(Case B)، خارجی(Case C)، هر دو لوله جانبی (Case D)، هر دو لوله جانبی (Case E) به ترتیب، %40، %57، 58% و %56 می‌باشد. همچنین با تغییر دمای سیال از 65 به 60 و 55 درجه سانتی‌گراد به ترتیب زمان انجماد تا %21 و %34 کاهش یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Investigation of the Behavior of Solidification in a Triplex Tube Heat Exchanger Containing Phase Change Material using Fin

نویسندگان [English]

  • Abolfazl Nematpour keshteli 1
  • mohsen sheikholeslami 2
1 Department of Mechanical Engineering, Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
2 Assistant Professor, Babol Noshirvani University of Technology
چکیده [English]

In this paper three dimensional numerical study of solidification of phase change material (PCM) in a triplex tube heat exchanger is studied. Water is used as heat transfer fluid (HTF) which flows through the inner and outer tubes while the shell side is filled with RT82 as the PCM. The main purpose of this study is to investigate the effect of fin arrangement and the addition of CuO nanoparticles with different volume fractions on solidification behavior of phase change material. Also a comparison between triplex tube heat exchanger with fin and nanoparticles and triplex tube heat exchanger without fin and nanoparticles is done. Also, the amount of stored energy has been investigated. The results show that with the addition of nanoparticles, the solidification time for all heat exchanger with fines has decreased with respect to the without fin heat exchanger. The results also show that the reduction of solidification time compared to the without fin mode for interior pipe arrangement (Case B), for external pipe arrangement (Case C), both side pipes (Case D), and both side pipes (Case E), 40%, 57%, 58% and 56% respectively. Also, by changing the fluid temperature from 65 to 60 and 55 ° C, the solidification time decreased to 21% and 34%, respectively.

کلیدواژه‌ها [English]

  • Solidification process
  • Phase change material
  • Arrangement fins
  • Heat transfer
[1] M.A. Cuevas-Diarte, T. Calvet-Pallas, J.L. Tamarit, H.A.J. Oonk, D. Mondieig, Y. Haget, “Nuevos materials termo adjustable”, Mundo Cientifico, 2000.
 
[2] D. Pal, Y. Joshi, “Application of phase change materials for passive thermal control of plastic quad flat packages, a computational study”, Numerical Heat Transfer, Part A Applications, Vol. 30, Jan1996, pp. 19-34.
 
[3] L.F. Cabeza, J. Roca, M. Nogues, B. Zalba, J.M. Marın, “Transportation and Conservation of Temperature Sensitive Materials with Phase Change Materials”, State of the Art. IEA ECES IA Annex 17 2nd Workshop, Ljubljana (Slovenia), 2002.
 
[4] M. Koschenz, B. Lehmann, “Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings”, Energy and buildings, Vol. 36, June 2004, pp. 567-578.
 
 [5] L.L. Vasiliev, V.S. Burak, A.G. Kulakov, D.A. Mishkinis, P.V. Bohan, “Latent heat storage modules for preheating internal combustion engines, application to a bus petrol engine”, Applied Thermal Engineering, Vol. 20, July 2000, pp. 913-923.
 
[6] M. Sokolov, Y. Keizman, “Performance indicators for solar pipes with phase change storage”, Solar Energy, Vol. 47, 1991, pp. 339-346.
 
[7] B. Zalba, J.M. Marın, L.F. Cabeza, H. Mehling, “Review on thermal energy storage with phase change materials, heat transfer analysis and applications”, Applied Thermal Engineering, Vol. 23, February 2003, pp. 251-283.
 
[8] M. Medrano, M.O. Yilmaz, M. Nogues, I. Martorell, J. Roca, L.F. Cabeza, “Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems”, Applied Energy, Vol. 86, October 2009, pp. 2047–2055.
 
[9] A. Sari, K. Kaygusuz, “Thermal and heat transfer characteristics in latent heat storage system using lauric acid”, Energy Conversion and Management. Vol. 43, December 2002, pp. 2493–2507.
 
[10] K.A.R. Ismail, F.A.M. Lino, R.C.R. da Silva, A.B. de Jesus, L.C. Paixao, “Experimentally validated two-dimensional numerical model for the solidification of PCM along a horizontal long tube”, International Journal of Thermal Sciences, Vol. 75, January 2014, pp. 184–193.
 
[11] F. Agyenim, P.Eames, M. Smyth, “Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array”, Renewable Energy, Vol. 35, January 2010, pp. 198-207.
 
[12] A. Castell, C. Sole, M. Medrano, J. Roca, L.F. Cabeza, D. Garcia, “Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins”, Applied Thermal Engineering, Vol. 28, September 2008, pp. 1676-1686.
 
[13] J.C. Choi, S.D. Kim, “Heat-transfer characteristics of a latent heat storage system using MgCl2·6H2O”, Energy, Vol.17, December 1992, pp. 1153-1164.
 
[14] A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, “Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins”, International Journal Heat Mass Transfer, Vol.61, June 2013, pp. 684-695.
 [15] مسلم قاسمی، بهزاد قاسمی و افراسیاب رئیسی، "جابجایی آزاد نانوسیال آب-آلومینا در یک محفظه مربعی حاوی دو جفت چشمه و چاه"، نشریه مدل‌سازی در مهندسی، دوره 15، شماره 49، تابستان 1396، صفحه 88- 77.
 [16] سیف الله سعدالدین و محمد همت اسفه، "ارزیابی و تخمین انتقال حرارت و مشخصه های جریان جابجایی ترکیبی پیرامون موانع داغ تعبیه شده در محفظه مربعی شیب دار پر شده از نانوسیال"، نشریه مدل‌سازی در مهندسی، دوره 10، شماره 28، بهار 1391، صفحه 42- 31.
[16] کامیار کمانی و روح اله رفعی، "بررسی انتقال حرارت و جریان آرام نانوسیال از دیدگاه قانون دوم ترمودینامیک در یک مبدل حرارتی جریان مخالف"، نشریه مدل‌سازی در مهندسی، دوره 13، شماره 41، تابستان 1394، صفحه 57- 47.
 
[18] A.D. Brent, V.R. Voller, K.J. Reid, “Enthalpy-porosity technique for modeling convection diffusion phase change application to the melting of pure metal”, Numerical Heat Transfer, Vol. 13, 1988, pp. 297–318.
 
[19] V.R. Voller, C. Prakash, “Fixed grid numerical modeling methodology for convection-diffusion mush region phase change problems”, International Journal of Heat and Mass Transfer, Vol. 30, August 1987, pp. 1709– 1719.
 
[20] W.B. Ye, D.S. Zhu, N. Wang, “Numerical simulation on phase-change thermal storage/release in a plate-fin unit”, Applied Thermal Engineering, Vol. 31, December 2011, P.P. 3871–84.
 
[21] N. Wakao, S. Kaguei, “Heat and mass transfer in packed beds”, New York, Gordon and Breach Science Publishers, 1982, p.p. 175–205.
 
[22] S. Mat, A. A. Al-Abidi, K. Sopian, Sulaiman, M. Y., A.Th. Mohammad, “Enhance heat transfer for PCM melting in triplex tube with internal-external fins”, Energy Conversion and Management, Vol. 74, October 2013, pp. 223-236.