استفاده از محیط متخلخل برای بهبود انتقال گرمای جابه‏ جایی اجباری در کانال و تحلیل عددی آن به روش بولتزمن شبکه‏ ای‏

نوع مقاله: مقاله مکانیک

نویسندگان

1 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه زنجان، زنجان، ایران

2 دانشجوی کارشناسی، مهندسی مکانیک، دانشگاه زنجان

چکیده

در این مقاله، تحلیل عددی جریان و انتقال حرارت در کانال دوبعدی با حضور محیط متخلخل و بر اساس روش بولتزمن شبکه‏‌ای، صورت گرفته است. دلیل اصلی قرار دادن محیط متخلخل داخل کانال، کاهش سطح مقطع موثر کانال و افزایش موضعی سرعت متوسط جریان به منظور افزایش آهنگ انتقال گرما و کنترل دمای بیشینه صفحه گرم بوده است. از سوی دیگر، به دلیل عبور بخشی از جریان از داخل محیط متخلخل از افت فشار ناگهانی در اثر کاهش سطح مقطع جلوگیری به عمل می‏آید. بدین منظور، یک محیط متخلخل با ساختار تصادفی به صورت موضعی در قسمت فوقانی کانال در نظر گرفته شده است. نتایج کار حاضر، مشتمل بر بررسی اثرات پارامترهای موثر از قبیل اعداد رینولدز، پرانتل، نسبت منظری و تخلخل محیط متخلخل بر بیشینه دمای سطح گرم، عدد ناسلت متوسط و افت فشار کانال، می‏باشد. نتایج نشان می‌دهد که افزایش تخلخل سبب کاهش اختلاف دمای بیشینه صفحه در دو حالت کانال ساده و کانال حاوی محیط متخلخل می‌شود. همچنین مشاهده می‌شود که استفاده از محیط متخلخل در رینولدزهای پایین نسبت به کاهش دمای صفحه گرم، توجیه بیشتری دارد. در کنار این موضوع، افزایش عدد پرانتل در ابتدا سبب افزایش دمای بیشینه صفحه گرم می‌شود و افزایش بیشتر آن، دمای بیشنیه‌ی صفحه را کاهش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using the porous medium to improve the forced convective heat transfer in the channel and its numerical analysis with lattice Boltzmann method

نویسندگان [English]

  • Mohammad Taghilou 1
  • jalal ghasemi jalal ghasemi
  • Mohammad Norouz 2
1 Mechanical Engineering
2 BS Student, Mech. Eng.University of Zanjan
چکیده [English]

In this paper, numerical analysis of flow and heat transfer in a two-dimensional channel with porous medium and based on the lattice Boltzmann method is performed. The main reason for placing the porous medium inside the channel is to reduce the effective cross section of the channel and increase the localized mean velocity to increase the rate of heat transfer and control the maximum temperature of the hot plate. Also, due to passage of a part of the flow from inside of the porous medium, a sudden drop in pressure is prevented by reducing the cross-section. For this purpose, a porous medium with a random structure is considered in the upper part of the channel. The results include the effects of effective parameters such as Reynolds numbers, Prandtl number, aspect ratio and porosity of the porous medium on the maximum temperature, average Nusselt number and pressure drop. Results show that increase of the porosity increases the difference between the maximum temperature of simple channel and channel with porous medium. It is also observed that the use of a porous medium in the low Reynolds numbers creates a higher decrease in the hot plate temperature. In addition, increasing the Prandtl number initially increases the maximum temperature of the hot plate and its further increase will reduce the maximum temperature.

کلیدواژه‌ها [English]

  • Forced convection
  • Porous medium
  • Permeability
  • Lattice Boltzmann method

[1]  M.A. Van Doormaal and J.G. Pharoah, "Determination of permeability in fibrous porous media using the lattice Boltzmann method with application to PEM fuel cells", International journal for numerical methods in fluids, Vol. 59, No.1, 2009, pp. 75-89.

[2] M. Ghazvini and H. Shokouhmand, "Investigation of a nanofluid-cooled microchannel heat sink using fin and porous media approaches", Energy conversion and management, Vol. 50, No. 9, 2009, pp. 2373-2380.

[3]  M. Hatami and D. Ganji, "Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method", Energy Conversion and management, Vol.78, 2014, pp. 347-358.

[4]  A. Nabovati, Pore level simulation of single and two phase flow in porous media using Lattice Boltzmann method, PhD thesis, University of New Brunswick, Department of Mechanical Engineering, 2009.

[5] آرش کریمی پور، محمد اکبری و داود طغرایی، "بررسی اثر گرانش بر جابجایی توام یک میکروجریان با استفاده از روش شبکه بولتزمن"،  نشریه مدل‌سازی در مهندسی، دوره 11، شماره 35، زمستان 1392، صفحه 77-94.

[6]  Z. Guo and T. Zhao, "A lattice Boltzmann model for convection heat transfer in porous media", Numerical Heat Transfer Part B, Vol. 47, No.2, 2005, pp. 157-177.

[7]  H. Shokouhmand, F. Jam and M. Salimpour, "Simulation of laminar flow and convective heat transfer in conduits filled with porous media using Lattice Boltzmann Method", International Communications in Heat and Mass Transfer, Vol. 36, No. 4, 2009, pp. 378-384.

[8]  C. Zhao, L. Dai, G. Tang, Z. Qu and Z. Li, "Numerical study of natural convection in porous media (metals) using Lattice Boltzmann Method (LBM)", International Journal of Heat and Fluid Flow, Vol. 31, No. 5, 2010, pp. 925-934.

[9]  A. Grucelski and J. Pozorski, "Lattice Boltzmann simulations of flow past a circular cylinder and in simple porous media", Computers & Fluids, Vol. 71, 2013, pp. 406-416.

[10]  A. Pazdniakou and P. Adler, "Dynamic permeability of porous media by the lattice Boltzmann method", Advances in water resources, Vol. 62, 2013, pp. 292-302.

[11]  A. Zarghami, C. Biscarini, S. Succi and S. Ubertini, "Hydrodynamics in porous media: A finite volume lattice Boltzmann study", Journal of Scientific Computing, Vol. 59, No. 1, 2014, pp. 80-103.

[12] طاهر ارمغانی، محمد جواد مغربی و محسن نظری, "مقایسه انتقال حرارت جابجایی اجباری تک‌فازی و دوفازی نانوسیالات در کانال متخلخل"، نشریه مدل سازی در مهندسی، دوره 13، شماره 40، بهار 1394، صفحه 103-114.

[13]  L.-C. Qiu, "A coupling model of DEM and LBM for fluid flow through porous media", Procedia engineering, Vol. 102, 2015, pp. 1520-1525.

[14]  K. Grissa, R. Chaabane, Z. Lataoui, A. Benselama, Y. Bertin and A. Jemni, "Lattice Boltzmann model for incompressible axisymmetric thermal flows through porous media", Physical Review E, Vol. 94, No. 4, 2016, pp. 043306.

[15]  M. Liu, Y. Shi, J. Yan and Y. Yan, "Lattice Boltzmann simulation of flow and heat transfer in random porous media constructed by simulated annealing algorithm", Applied Thermal Engineering, Vol. 115, 2017, pp. 1348-1356.

[16]  M. Sheikholeslami and M. Seyednezhad, "Lattice Boltzmann Method simulation for CuO-water nanofluid flow in a porous enclosure with hot obstacle", Journal of Molecular Liquids, Vol. 243, 2017, pp. 249-256.

[17]  M. Sheikholeslami, "Lattice Boltzmann method simulation for MHD non-Darcy nanofluid free convection", Physica B: Condensed Matter, Vol. 516, 2017, pp. 55-71.

[18]  J. Wang, Q. Kang, Y. Wang, R. Pawar and S.S. Rahman, "Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method", Fuel, Vol. 205, 2017, pp. 232-246.

[19]  F. Gharibi, S. Jafari, M. Rahnama, B. Khalili and E.J. Javaran, "Simulation of flow in granular porous media using combined Lattice Boltzmann Method and Smoothed Profile Method", Computers & Fluids, Vol. 177, 2018, pp. 1-11.

[20]  Z. Cheng, Z. Ning, Q. Wang, Y. Zeng, R. Qi, L. Huang and W. Zhang, "The effect of pore structure on non-Darcy flow in porous media using the lattice Boltzmann method", Journal of Petroleum Science and Engineering, Vol. 172, 2019, pp. 391-400.

[21]  D. Gao, Z. Chen and L. Chen, "A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-equilibrium conditions", International Journal of Heat and Mass Transfer, Vol. 70, 2014, pp. 979-989.

[22]  T. Zhao, H. Zhao, Z. Ning, X. Li and Q. Wang, "Permeability prediction of numerical reconstructed multiscale tight porous media using the representative elementary volume scale lattice Boltzmann method", International Journal of Heat and Mass Transfer, Vol. 118, 2018, pp. 368-377.

[23]  Y.-l. Zhao and Z.-m. Wang, "Prediction of apparent permeability of porous media based on a modified lattice Boltzmann method", Journal of Petroleum Science and Engineering, 2018, In press.

[24]  Z. Wang, Y. Liu, J. Zhang and N. Dang, "Study of laminar natural convection in a vertical annulus with inner wall covered by a porous layer by using lattice Boltzmann method", International Journal of Thermal Sciences, Vol. 135, 2019, pp. 386-397.

[25] مرضیه بابایی ربیعی، شهرام طالبی، "بررسی عددی تأثیرپذیری افت فشار از نحوه آرایش فیبرها در فیلترهای هوا با استفاده از روش شبکه بولتزمن"، نشریه مدل سازی در مهندسی، دوره 14، شماره 47، زمستان 1395، صفحه 267-278.

[26]  M. Sukop and  DT Thorne, Lattice Boltzmann Modeling, Springer-Verlag  Berlin Heidelber, 2006.

[27]  J.D. Sterling and S. Chen, "Stability analysis of lattice Boltzmann methods", Journal of Computational Physics, Vol. 123, No. 1, 1996, pp. 196-206.

[28]  A. Mohamad, M. El-Ganaoui and R. Bennacer, "Lattice Boltzmann simulation of natural convection in an open ended cavity", International Journal of Thermal Sciences, Vol. 48, No. 10, 2009, pp. 1870-1875.

[29]  P. Yuan, thermal lattice Boltzmann two-phase flow model for fluid dynamics, PhD thesis, University of Pittsburgh, 2006.

[30]  G. Tang, W. Tao and Y. He, "Simulation of fluid flow and heat transfer in a plane channel using the lattice Boltzmann method", International Journal of Modern Physics B, Vol.17, No. 01n02, 2003, pp.183-187.

[31]  A. Koponen, M. Kataja and J. Timonen, "Permeability and effective porosity of porous media", Physical Review E, Vol. 56, No. 3, 1997, pp. 3319.

[32]  A. Nabovati and A. Sousa, "Fluid flow simulation in random porous media at pore level using lattice Boltzmann method", Journal of Engineering Science and Technology, Vol. 2, No. 3, 2007, pp. 226- 237.