تحلیل عددی اثر تغییرات شتاب گرانشی بر نشست ذرات معلق در مسیرهای هوایی نای-برونشی انسان: شبیه سازی محاسباتی سه بعدی

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشجو/دانشگاه تهران

2 دانشیار مهندسی پزشکی/دانشگاه تهران

10.22075/jme.2019.16493.1645

چکیده

در جهت پیش‌بینی ایجاد برخی بیماری‌های تنفسی و آثار آنها در مجاری و یا پیش‌بینی دوز و اثر داروهای تنفسی جهت کنترل یا درمان این بیماری‌ها، بحث رسوب آئروسل‌های دارویی و ذرات بیماری‌زا مطرح می‌شود. از جمله عوامل مؤثر بر رسوب ذرات در مجاری تنفسی می‌توان به الگوی تنفس و جریان در مجاری، اندازه و چگالی ذرات، هندسه مجاری و نیروی گرانش وارد بر این ذرات اشاره کرد. در این مطالعه، به بررسی اصلاح و تغییر الگوی جریان در مجاری تنفسی با اعمال شروط مرزی متفاوت در خروجی و تأثیر این الگوهای مختلف جریان بر روی رسوب ذرات آهن پرداخته شد. با حفظ برخی از این الگوها، به‌طور همزمان تأثیر جهت اعمال و مقدار نیروی گرانش (از شرایط گرانش ناچیز تا حالت معمول روی سطح زمین) بر این ذرات، بررسی شد. از دو سرعت ورودی جریان 2 و 4 متر بر ثانیه به‌منظور تغییر در ماهیت جریان سیال از آرام به آشفته استفاده شد و دو اندازه ذره 4 و 8 میکرونی برای ذرات آهن فرض شد. نتایج، افزایش رسوب ذرات با افزایش مقدار نیروی گرانش و تأثیر تغییر جهت این نیرو از حالت هم‌راستا با جریان ورودی (جهت X) به حالت عمود بر جریان ورودی (جهت Y) را به‌عنوان عامل مؤثر در تشدید این افزایش نشان داد. الگوی جریان اصلاح‌شده در مجاری که عاری از جریان‌های بازگشتی و جریان‌های ثانویه می‌باشد، مقادیر این رسوب را کاهش داد و عکس این نتیجه را با افزایش اندازه ذرات آهن به‌همراه داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical analysis of the effects of gravitational acceleration on aerosol deposition in the human trachea-bronchial airways: A 3D Computational Simulation

نویسندگان [English]

  • Yusuf Binabaji 1
  • Bahman Vahidi 2
1 MSc student
2 Associate Professor/University of Tehran
چکیده [English]

The deposition of pharmaceutical aerosols and pathogenic particles are considered when predicting certain pulmonary disorders or determining the dose of respiratory drugs in order to control and manage the diseases. The breathing and flow pattern, particle size and density, airways geometry and the gravitational force exerted on the particles are among the factors contributing to the deposition in the respiratory tract. In this study, modification of the flow pattern in the respiratory tract was investigated by applying different boundary conditions on the outlet and the effects of various flow patterns on the deposition of the iron particles was studied. Keeping some of these patterns, the impact of exerting gravitational forces with different directions and values (from the microgravity to normal condition on the earth) on the particles was examined. The inflow with velocities of 2 and 4m/s was used in order to change the nature of the flow from laminar to turbulent. Two particle sizes of 4 and 8 microns for iron particles were assumed. As a result, deposition of particles increased with an increase in the gravitational force and the effect of changing the direction of the gravity from the X direction (aligned with the flow direction) to the Y direction (perpendicular to the flow) was shown to be a significant factor in a further increase of particle deposition. The modified flow pattern which was free of any reverse and secondary flow, has reduced the deposition values and resulted in an opposite effect increasing the size of iron particles.

کلیدواژه‌ها [English]

  • Biofluid mechanics
  • Aerosol
  • Computational fluid dynamics
  • trachea-bronchial airways
 
[1]F. Wilquem and G. Degrez, "Numerical modeling of steady inspiratory airflow through a three-generation model of the human central airways", Journal of biomechanical engineering, Vol. 119, No. 1, 1997, pp. 59-65.
[2]Y. Zhao, C.T. Brunskill and B.B. Lieber, "Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway", Journal of biomechanical engineering, Vol. 119, No. 1, 1997, pp. 52-58.
[3]I. Balásházy, W. Hofmann and Á. Farkas, "Numerical Modeling of Deposition of Inhaled Particles in Central Human Airways", Annals of Occupational Hygiene, Vol. 46 (suppl 1), 2002, pp. 353-357.
[4]M.J. Oldham, "Computational fluid dynamic predictions and experimental results for particle deposition in an airway model", Aerosol Science & Technology, Vol. 32, No. 1, 2000, pp. 61-71.
[5]B. Asgharian and S. Anjilvel, "Inertial and gravitational deposition of particles in a square cross section bifurcating airway", Aerosol Science and Technology, Vol. 20, No. 2, 1994, pp. 177-193.
[6]Z. Zhang and C. Kleinstreuer, "Effect of particle inlet distributions on deposition in a triple bifurcation lung airway model", Journal of Aerosol Medicine, Vol. 14, No. 1, 2001, pp. 13-29.
[7]L. Zhang, B. Asgharian and S. Anjilvel, "Inertial deposition of particles in the human upper airway bifurcations", Aerosol Science and Technology, Vol. 26, No. 2, 1997, pp. 97-110.
[8] I. Balashazy, T. Heistracher and W. Hofmann, "Air flow and particle deposition patterns in bronchial airway bifurcations: the effect of different CFD models and bifurcation geometries", Journal of Aerosol Medicine, Vol. 9, No. 3, 1996, pp. 287-301.
[9]G. Yu, Z. Zhang and R. Lessmann, "Computer simulation of the flow field and particle deposition by diffusion in a 3-D human airway bifurcation", Aerosol Science and Technology, Vol. 25, No. 3, 1996, pp. 338-352.
[10]J.W. Lee, J.H. Goo and M.K. Chung, "Characteristics of inertial deposition in a double bifurcation", Journal of Aerosol Science, Vol. 27, No. 1, 1996, pp. 119-138.
[11]J.K. Comer, C. Kleinstreuer, S. Hyun and C.S. Kim, "Aerosol transport and deposition in sequentially bifurcating airways", Journal of biomechanical engineering, Vol. 122, No. 2, 2000, pp. 152-158.
[12]P.G. Koullapis, S.C. Kassinos, M. Bivolarova and A.K. Melikov, "Particle deposition in a realistic geometry of the human conducting airways: effects of inlet velocity profile, inhalation flowrate and electrostatic charge", Journal of Biomechanics, Vol. 49. No. 11, 2016, pp. 2201-2212.
[13]P.W. Longest and L.T. Holbrook, "In silico models of aerosol delivery to the respiratory tract-development and applications", Advanced drug delivery reviews, Vol. 64, No. 4, 2012, pp. 296-311.
[14]P.W. Longest, G. Tian, R.L. Walenga and M. Hindle, "Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways", Pharmaceutical research, Vol. 29, No. 6, 2012, pp. 1670-1688.
[15] J.E. Agnew, "Physical properties and mechanisms of deposition of aerosols", Aerosols and the lung: clinical and experimental aspects, 1984, pp. 49-70.
[16] R.F. Phalen, M.J. Oldham and G.M. Schum, "Growth and ageing of the bronchial tree: implications for particle deposition calculations", Radiation Protection Dosimetry, Vol. 38, No. 1-3, 1991, pp. 15-21.
[17] M.H. Becquemin, C.P. Yu, M. Roy and A. Bouchikhi, "Total deposition of inhaled particles related to age: comparison with age-dependent model calculations", Radiation Protection Dosimetry, Vol. 38, No. 1-3, 1991, pp. 23-28.
[18] W.T.B.R.C. Hofmann, T.B Martonen and R.C. Graham, "Predicted deposition of nonhygroscopic aerosols in the human lung as a function of subject age", Journal of Aerosol Medicine, Vol. 2, No. 1, 1989, pp. 49-68.
[19] G.B. Xu and C.P. Yu, "Effects of age on deposition of inhaled aerosols in the human lung", Aerosol science and Technology, Vol. 5, No. 3, 1986, pp. 349-357.
[20] C.P. Yu and G.B. Xu, "Deposition of hygroscopic aerosol particles in growing human lungs", In deposition and clearance od aerosols in the human respiratory tract. W. Hofmann (ed.). Vienna, Austria: Facultas, 1987, pp. 111-117.
[21] C.S. Kim and P.A. Jaques, "Total lung deposition of ultrafine particles in elderly subjects during controlled breathing", Inhalation toxicology, Vol. 17, No. 7-8, 2005, pp. 387-399.
[22]J.N. Pritchard, S.J. Jefferies and A. Black, "Sex differences in the regional deposition of inhaled particles in the 2.5–7.5 μm size range", Journal of Aerosol Science, Vol. 17, No. 3, 1986, pp. 385-389.
[23]C.S. Kim and S.C. Hu, "Regional deposition of inhaled particles in human lungs: comparison between men and women", Journal of Applied Physiology, Vol. 84, No. 6, 1998, pp. 1834-1844.
[24] K.K. Isaacs and T.B. Martonen, "Particle deposition in children's lungs: theory and experiment", Journal of aerosol medicine, Vol. 18, No.3, 2005, pp. 337-353.
[25] S.P. Newman and H.K. Chan, "In vitro/in vivo comparisons in pulmonary drug delivery", Journal of aerosol medicine and pulmonary drug delivery, Vol. 21, No. 1, 2008, pp. 77-84.
[26] A.H. Chow, H.H. Tong, P. Chattopadhyay, B.Y. Shekunov, "Particle engineering for pulmonary drug delivery", Pharmaceutical Research, 2007, Vol. 24, pp. 411-437.
[27] J. Haughney, D. Price, N.C. Barnes, J.C. Virchow, N. Roche and H. Chrystyn, "Choosing inhaler devices for people with asthma: current knowledge and outstanding research needs", Respiratory Medicine CME, Vol. 3, No. 3, 2010, pp. 125-131.
[28] R.J. Malcolmson and J.K. Embleton, "Dry powder formulations for pulmonary delivery", Pharmaceutical Science & Technology Today, Vol. 1, No. 9, 1998, 394-398.
[29] O.S. Usmani, "Delivery of drugs to the airways", Lung Biol Health Dis, 2009, pp. 143-161.
[30] محمدرضا سلطانی صدرآبادی، بهمن وحیدی و روزبه ریاضی،«تحلیل جریان خون در حلقة ویلیس مغزی با استفاده از تصاویر سی تی اسکن و روش برهم‌کنش سیال-سازه»، مجلة مدل‌سازی در مهندسی، دورة 17، شمارة 57، تابستان 1398.
[31] مائده رحیم‌نژاد، بهمن وحیدی، بهمن ابراهیمی حسین‌زاده و فاطمه یزدیان، «شبیه‌سازی دینامیک مولکولی برهم‌کنش داروی ضد سرطان پاکلیتاکسل با غشای سلولی: بررسی تغییرات انرژی واندروالسی و فاصله مرکز جرم»، مجلة مدل‌سازی در مهندسی، دورة 17،‌ شماره 57، تابستان 1398، صفحه 15-25.
[32] اسماعیل رحیم‌پور، بهمن وحیدی و زهرا ملاحسینی، «بررسی عددی رفتار کرنش سختی سلول‌های بنیادی مزنشیمال بر روی بسترهای الاستیک»، مجلة مدل‌سازی در مهندسی، دوره 16، شماره 55، زمستان 1397، صفحه 351-359.
[33] Respiratory Drug Delivery Online, 2015, Networks [Online], Available: http://www.rddonline.com/resources/tools/models.php
[34] C. Van Ertbruggen, C. Hirsch and M. Paiva, "Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics", Journal of Applied Physiology, Vol. 98, No. 3, 2005, pp. 970-980.
[35] P. Roache, Computational Fluid Dynamics, Albuquerque, N.M., Hermosa Publishers [c1972].
[36] Fluent, Fluent 6.0 User's Guide, chap 19, FLUENT Inc, 2001.
[37] Fluent, A. N. S. Y. S. Fluent 15.0 User's Guide, ANSYS FLUENT Inc, 2013.
[38] Fluent, Fluent 6.0 User's Guide, chap 6, FLUENT Inc, 2001.
[39] J. W. De Backer, W.G. Vos, C.D. Gorle, P. Germonpré, B. Partoens, F.L. Wuyts and W. De Backer, "Flow analyses in the lower airways: patient-specific model and boundary conditions", Medical engineering & physics, Vol. 30, No. 7, 2008, pp. 872-879.
[40] W.H.K. Van Deun, "Simulation of airflow in a realistic CT-scan derived lung geometry", M.S. thesis, Dept. Aero. Eng, Delf. Univ., Delft., Abbrev., 2011.
[41] Z. Li, C. Kleinstreuer and Z. Zhang, "Simulation of airflow fields and microparticle deposition in realistic human lung airway models. Part I: Airflow patterns", European Journal of Mechanics-B/Fluids, Vol. 26, No. 5, 2007, pp. 632-649.
[42] C. Kleinstreuer, Z. Zhang and C. S. Kim, "Combined inertial and gravitational deposition of microparticles in small model airways of a human respiratory system", Journal of Aerosol Science, Vol. 38, No. 10, 2007, pp. 1047-1061.
[43] W. Hofmann, and I. Balásházy, "Particle deposition patterns within airway bifurcations-solution of the 3D Navier-Stokes equation", Radiation Protection Dosimetry, Vol. 38, No. 1-3, 1991, pp. 57-63.
[44] K.W. Stapleton, E. Guentsch, M.K. Hoskinson and W.H. Finlay, "On the suitability of k–ε turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment", Journal of Aerosol Science, Vol. 31, No. 6, 2000, pp. 739-749.
[45] Canadian Center for Occupational Health and Safty. (2012, October 1). Networks [Online]. Available: http://www.ccohs.ca/oshanswers/chemicals/lungs_dust.html
[46] T.L. Chan and M. Lippmann, "Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans", The American Industrial Hygiene Association Journal, Vol. 41, No. 6, 1980, pp. 399-409.
[47] P.C. Emmett, R.J. Aitken and W.J. Hannan, "Measurements of the total and regional deposition of inhaled particles in the human respiratory tract", Journal of Aerosol Science, Vol. 13, No. 6, 1982, pp. 549-560.
[48] N. Foord, A. Black and M. Walsh, "Regional deposition of 2.5–7.5 μm diameter inhaled particles in healthy male non-smokers", Journal of Aerosol Science, Vol. 9, No. 4, 1978, pp. 343-357.
[49] M. Lippmann, "Regional deposition of particles in the human respiratory tract", Comprehensive Physiology, Supplement 26: Handbook of Physiology, Reactions to Environmental Agents, 1977.
[50] Z. Zhang, C. Kleinstreuer and C.S. Kim, "Comparison of analytical and CFD models with regard to micron particle deposition in a human 16-generation tracheobronchial airway model", Journal of Aerosol Science, Vol. 40, No. 1, 2009, pp. 16-28.
[51] A. Comerford, S. Rausch, L. Wiechert, M.W. Gee and W. A. Wall, "Computational modelling of the respiratory system for improvement of mechanical ventilation strategies", In High Performance Computing in Science and Engineering, Garching/Munich 2009 (pp. 267-277). Springer Berlin Heidelberg, 2010.