مدل‎سازی مصرف انرژی در فرآیندهای تولید واحدهای صنعتی بر مبنای روش تقریب خطی تکه‌ای با هدف اجرای برنامه‎های پاسخ‎گویی بار و مشارکت در بازار انرژی و خدمات جانبی

نوع مقاله : مقاله برق

نویسندگان

1 دانشجوی کارشناسی ارشد دانشکده مهندسی برق و کامپیوتر دانشگاه صنعتی جندی شاپور

2 رئیس دانشکده برق-عضو هیأت علمی گروه قدرت

چکیده

در این مقاله، یک مدل‎سازی دقیق از مصرف انرژی در فرآیند‎های تولید واحد‎های صنعتی آلومینیوم و سیمان مطابق روش تقریب خطی تکه‎ای (LPWA ) ارائه شده است. سپس مدل ارائه شده در برنامه‎ریزی مدیریت انرژی روز بعد یک ریزشبکه شامل این واحد‎های صنعتی به کار گرفته شده است. به منظور افزایش بهره‎وری واحد‎های صنعتی مذکور، برنامه‎های پاسخ‎گویی بار اجرا شده و بنابراین این واحد‎ها قادر به مشارکت در بازار انرژی و خدمات جانبی می‎باشند. برنامه‎ریزی مدیریت انرژی پیشنهادی در این مقاله ضمن در نظرگرفتن مدل دقیق و کلیه‎ی قیود مربوط به واحد‎های صنعتی و ریزشبکه، به بیشینه‏سازی سود ریزشبکه و این واحد‎ها می‎پردازد. کارایی مدل و برنامه‎ریزی پیشنهادی از طریق انجام دو نمونه‎ مطالعاتی، با و بدون اجرای برنامه‎های پاسخ‎گویی بار ارزیابی شده است. علاوه بر این، تاثیر تغییر سود حاصل از فروش محصول هر واحد صنعتی و قیمت‎های فروش انرژی ریزشبکه به بازار برق بر سود نهایی واحدها و ریزشبکه با استفاده از تحلیل حساسیت بررسی شده است. نتایج ضمن تأیید اعتبار مدل پیشنهادی نشان می‌دهند که اجرای برنامه‌های پاسخ‌گویی بار و مشارکت واحدهای صنعتی در بازار انرژی و خدمات جانبی میتواند ضمن اصلاح منحنی تقاضا، سود ریزشبکه و واحدها را افزایش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Energy Consumption Modeling of Manufacturing Processes in Industrial Units Based on Linear Piece-Wise Approximation Method with the aim of Implementing Demand Response Programs and Participating in Energy and Ancillary Service Market

نویسندگان [English]

  • Nilufar Gerami 1
  • Ahmad Ghasemi 2
1 Electrical and Computer engineering department
2 Department of electrical and computer engineering
چکیده [English]

In this paper, a detailed modeling of energy consumption in the processes of producing aluminum and cement industrial units based on the linear piece-wise approximation (LPWA) method is presented. The presented model has been implemented in the day-ahead energy management planning of a microgrid including these industrial units. In order to increase the profit of the mentioned industrial units, the demand response programs are implemented and therefore these units are able to participate in the energy and ancillary services market. The energy management planning proposed in this paper, considers the exact model and all constraints of the industrial units and microgrid in order to maximize the profit of the microgrid and these units. The performance of the model and the proposed planning has been evaluated through two case studies, with and without implementation of demand response programs. In addition, the effect of the changes in the profit obtained by selling the product of each industrial unit and the prices of sold energy by microgrid to the electricity market, on the profit of the units and the microgrid, have been examined using the sensitivity analysis. The obtained results, besides validating the proposed model, show that the implementation of demand response programs and the participation of industrial units in the energy and ancillary services market, not only modifying the demand curve but also increase the profit of the microgrid and units.

کلیدواژه‌ها [English]

  • Industrial load
  • Industrial microgrid
  • Energy management
  • Demand response
  • Energy and spinning reserve
[ 1 [ سید محمد باقر ساداتی، جمال مشتاق، میعاد رضا شفیعی خواه، "تأثیر خودروهای الکتریکی و برنامه پاسخگویی بار بر بهرهبرداری بهینه
از شبکهی توزیع در چهارچوب یک مدل دو سطحی جدید" ، نشریه مدلسازی در مهندسی، دوره 16 ، شماره 54 ، پاییز 1397 ، صفحه 53 -
68 .
[2] N. Paterakisa, O. Erdinçb, J. Catalão, "An overview of Demand Response: Key-elements and international experience", Renewable and Sustainable Energy Reviews, Vol 69, 2017, pp 871–891
[ 3 [ جمشید آقایی، امین رحیمی رضایی، محمد رضا کریمی، "هماهنگی نیروگاههای بادی و دستگاههای ذخیرهساز سیستم قدرت در مسئله
برنامهریزی امنیت مقید مشارکت واحدها با استفاده از بهینهسازی استوار"، نشریه مدلسازی در مهندسی، دوره 16 ، شماره 53 ، تابستان
1397 ، صفحه 207 - 220 .
[ 4 [ علیرضا ابراهیمی، عباس دیدبان، رضا کی پور، "استراتژی کنترلی نوین در سیستمهای انرژی ترکیبی بادی-خورشیدی برمبنای تعیین
محدوده های بهینه شارژ و دشارژ باتریها در بازه های زمانی مختلف"، نشریه مدلسازی در مهندسی، دوره 16 ، شماره 55 ، زمستان 1397 ،
صفحه 163 - 173 .
[5] M. Starke, D. Letto, N. Alkadi, R. George, B. Johnson, K. Dowling, S. Khan, "Demand-side response from industrial loads", The Clean Energy and Technology Conference, Vol 2, 2013, pp 46–49.
[6] H. Nilsson, "The many faces of demand-side management", IET Power Engineering, 1994. Vol. 8, No. 5, pp. 207–210
[7] S. Mohagheghi, N. Raji, "Managing industrial energy intelligently: demand response scheme", IEEE Industry Applications Magazine, Vol. 20, No. 2, March-April 2014, pp. 53–62.
[8] J.S. Vardakas, N. Zorba, C .V. Verikoukis, "A survey on demand response programs in smart grids: pricing methods and optimization algorithms", IEEE Communications Surveys and Tutorials, Vol. 17, No. 1, 2014, pp. 152–178.
[9] G. Heffner, C. Goldman, B. Kirby, "Loads providing ancillary services: review of international experience", U.S. Department of Energy, Ernesto Orlando Lawrence Berkeley National Laboratory, April 2007, pp. 135–198.
[10] E. Ciapessoni, D. Cirio, F. Conte, S. Massucco, F. Silvestro, "Demand side response for frequency control in a regional power system", 2015 International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, August 2015, pp. 258–264.
[11] X. Zhang, G. Hug, "Bidding Strategy in Energy and Spinning Reserve Markets for Aluminum Smelters", 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, June 2015, No. 15239638.
[12] W. Choate, "US energy requirements for aluminum production historical perspective theoretical limits and new opportunities", J.A.S. Green (Ed.), Aluminum Recycling and Processing for Energy Conservation and Sustainability, ASM International, 2007, pp. 267.
[13] X. Zhao, B. He, F. Yuan Xu, L. Lai, Ch. Yang, Sh. Lu, D. Li, "A model of demand response scheduling for cement plant", 2014 IEEE International Conference on Systems, San Diego, CA, USA, October 2014, No. 14790178 .
[14] F. Yuan Xu, L. Lei Lai, "Novel Active Time-Based Demand Response for Industrial Consumers in Smart Grid", IEEE transactions on industrial informatics, Vol. 11, No. 6, December 2015, pp. 1564–1573.
[15] M. Naderi, S. Bahramara, Y. Khayat, H. Bevrani, "Optimal planning in a developing industrial microgrid with sensitive load, Energy Reports", Vol. 3, November 2017, pp. 124–134.
[16] R. hooshmand, S.nosratabadi, E. gholipour, "A comprehensive review on microgrid and virtual power plant concept employed for distributed energy resources scheduling in power systems", renewable and sustainable energy reviews. Vol. 67, January 2017, pp. 341–363.
[17] H. li, J. zhang, D. zheng, "Optimal energy management for industrial microgrids with high-penetration renewables", protection and control of modern power systems, April 2017, pp. 2-12.
[18] M. Ookie, et al., "Demand response for ancillary services", IEEE Transactions on Smart Grid, Vol. 4, No. 4, Dec. 2013, pp.1988–1995.
[19] A. Gholian, H. Mohsenian-Rad, J. Qin, "Optimal industrial load control in smart grid: a case study for oil refineries", 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21-25 July 2013, pp. 1–5.
[20] Z. Liu, A. Wierman, Y. Chen, B. Razon, N. Chen, "Data center demand response: avoiding the coincident peak via workload shifting and local generation", Performance Evaluation, Vol. 70, No 10, October 2013, pp. 770–791.