شناسایی آسیب‌های پوستی با استفاده از الگوریتم فازی

نوع مقاله : مقاله برق

نویسندگان

1 دانشگاه سمنان

2 دانشجوی کارشناسی ارشد، دانشکده مهندسی برق و کامپیوتر

10.22075/jme.2019.16669.1652

چکیده

آکنه یک بیماری شایع است که کیفیت زندگی افراد را تحت کنترل قرار می‌دهد. اولین قدم در درمان این بیماری شناسایی نواحی آسیب دیده می‌باشد. در گذشته این شناسایی به صورت دستی انجام می‌گرفت، که این ارزیابی از دید متخصصان مختلف متفاوت بود. امروزه به شناسایی نواحی آسیب‌دیده با استفاده از کامپیوتر پرداخته می‌شود که به تشخیص دقیق‌تری منجر می‌گردد. لذا در این پژوهش به شناسایی موقعیت آسیب‌های پوستی با استفاده از الگوریتم فازی پرداخته شده است. یکی از مزایای این روش کوتاه بودن زمان پردازش آن می‌باشد، به همین دلیل از روش ISODATA استفاده گردیده است. تصاویر استفاده شده در این پژوهش از دستگاه Viso Face گرفته شده که هیچ آسیبی به بافت‌های پوست نمی‌رساند، این تصاویر در مرحله ی آموزش استفاده می‌گردد. با توجه به اینکه این تصاویر در فضای رنگی RGB می‌باشند، با تبدیل به فضای رنگی HSI می‌توان رنگ‌ها را با جزئیات بیشتری مورد پردازش قرار داد. برای شناسایی آسیب‌ها و استخراج ویژگی از آسیب‌های پوستی، از الگوریتم فازی و تصاویر در فضای رنگی HSI استفاده گردید. در نهایت هدف از این پژوهش، ساخت روباتی برای درمان اتوماتیک آسیب‌ها با استفاده از دستگاه پلکسر‌پلاس می‌باشد. در فاز آزمایش، تصاویر رنگی فضای RGB و سنسور عمق دوربین کینکت، موقعیت سه بعدی آسیب‌ها را شناسایی می‌کند. در نهایت این اطلاعات به روبات برای کتنرل پلکسر پلاس، فرستاده می‌شود. برای ارزیابی عملکرد سیستم از معیارهای زیر استفاده می‌گردد، در روش پیشنهادی، مقدار متوسط دقت ۹۹.۴٪ ، درستی ٪۸۸.۲ و حساسیت ٪۵۱ بدست آمده است.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of Skin Lesions Using Fuzzy Logic Algorithm

نویسندگان [English]

  • soltanizadeh soltanizadeh 1
  • Negarin javadi 2
1 semnan university
2 Ms.C Student, Computer and Electrcal Engineering Dept, semnan University, Semnan, Iran
چکیده [English]

Acne is a common skin lesion which controls the quality of life. Skin analysis is one of the important steps before starting treatment. previously, this detection has been done manually, which cause different results by the various dermatologist. Today, the detection of skin lesions is done automatically, which leads to a more accurate diagnosis. In this paper, the locating and counting of skin lesions is done using Fuzzy Logic algorithm. Although many studies are done to detect the skin lesions, but the results of each method usually take a lot of time. Therefore, one of the advantage of proposed method is in processing time and then data cluster, which the ISODATA method is used. The images used in this study take from the Visio Face Machine, which has no effect to the skin’s texture, and are used in the training phase of system. Given that these images are in RGB color space; colors can be displayed in HSI color space in more details. For lesion detection and feature extraction, Fuzzy Logic algorithm and HSI color space are used. But the purpose of this paper is to build a robot, which burn lesions by Plexr Plus machine automatically. In test phase, using RGB color space and depth sensor of Kinect camera, three dimensional location of lesions are identified. Finally, the average of accuracy, precision and sensitivity were 99.4, 88,2 and 51 respectively.

کلیدواژه‌ها [English]

  • skin lesions
  • Visio Face machine Fuzzy Logic algorithm
  • ISODATA method
  • HSI color space
  • Kinect camera
  • Plexr Plus machine
[1] M.E. Yüksel, M. Borlu, "Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic", IEEE Transactions on Fuzzy Systems, Vol. 17, No. 4, Aug 2009, pp. 976–982.
[ 2 [ عباس نصرآبادی، ساسان آزادی، جواد حدادنیا، "آشکارسازی چهره انسان در تصاویر رنگی بر مبنای فیلتر گوسی"، نشریه مدلسازی
در مهندسی، دورهی 3 ، شمارهی 17 ، تابستان 1388 ، صفحه 9 - 1۶ .
[3] J. Humayun, A.S. Malik, S.B. Belhaouari, N. Kamel, F.B. Yap, "Localization of acne lesion through template matching", 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS 2012), IEEE, Vol. 1, 12 Jun 2012, pp. 91–94.
سلطانیزاده و جوادی 285
مجله مدل سازی در مهندسی سال هفدهم، شماره 59 ، زمستان 1398
[4] M. Lingala, R.J. Stanley, R.K. Rader, J. Hagerty, H.S. Rabinovitz, M. Oliviero, I. Choudhry, W.V. Stoecker, "Fuzzy logic color detection: Blue areas in melanoma dermoscopy images", Computerized Medical Imaging and Graphics, Vol. 38, No. 5, Jul 2014, pp. 403–10.
[5] J. Khan, A.S. Malik, N. Kamel, S.C. Dass, A.M. Affandi, "Segmentation of acne lesion using fuzzy C-means technique with intelligent selection of the desired cluster", In Engineering in Medicine and Biology Society (EMBC), 37th Annual International Conference of the IEEE, 25 Aug 2015, pp. 3077–3080.
[ ۶ [ زهرا تبریزیان، مرتضی حسینعلی بیگی، غلامرضا قدرتی امیری، "تشخیص آسیب در سازه های فلزی با استفاده از اطلاعات خیز
استاتیکی و الگوریتم ژنتیک"، مجله مدلسازی در مهندسی، دورهی 13 ، شمارهی 41 ، تابستان 1394 ، صفحه 147 - 158 .
[7] T. Chantharaphaichit, B. Uyyanonvara, C. Sinthanayothin, A. Nishihara, "Automatic acne detection with featured Bayesian classifier for medical treatment", In Proceedings of The 3rd International Conference on Robotics, Informatics, and Intelligence Control Technology (RIIT20 15), 30 Apr 2015, pp. 10–16.
[8] T. Chantharaphaichi, B. Uyyanonvara, C. Sinthanayothin, A. Nishihara, "Automatic acne detection for medical treatment", 2015 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), IEEE, 22 Mar 2015, pp. 1–6.
[9] S. Lucut, M.R. Smith, "Dermatological tracking of chronic acne treatment effectiveness", 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 16 Aug 2016, pp. 5421–5426.
[10] D.H. Ballard, "Generalizing the Hough transform to detect arbitrary shapes", Pattern Recognition, Vol. 13, No. 2, 1981, pp. 111–122.
[11] F.S. Abas, B. Kaffenberger, J. Bikowski, M.N. Gurcan, "Acne image analysis: lesion localization and classification", In Medical Imaging 2016: Computer-Aided Diagnosis, International Society for Optics and Photonics, 24 Mar 2016, Vol. 9785, p. 97850B.
[12] L. Ballerini, X. Li, R.B. Fisher, and J. Rees, "A query-by-example content-based image retrieval system of non-melanoma skin lesions", In MICCAI International Workshop on Medical Content-Based Retrieval for Clinical Decision Support, Springer, Berlin, Heidelberg, 2009, pp. 31–38.
[13] N. Alamdari, K. Tavakolian, M. Alhashim, R. Fazel-Rezai, "Detection and classification of acne lesions in acne patients: A mobile application", 2016 IEEE International Conference on Electro Information Technology (EIT), 19 May 2016, pp. 0739–0743.
[14] N. Kittigul, B. Uyyanonvara, "Automatic acne detection system for medical treatment progress report", 2016 7th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), IEEE, 20 Mar 2016, pp. 41–44.
[15] V. Singh, V. Shokeen, and B. Singh, "Face detection by haar cascade classifier with simple and complex backgrounds images using opencv implementation", International Journal of Advanced Technology in Engineering and Science, Vol. 1, No. 12, 2013, pp. 33–38.
[16] N. Kittigul, B. Uyyanonvara, "Acne Detection Using Speeded up Robust Features and Quantification Using K-Nearest Neighbors Algorithm", In Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science, ACM., 22 Jun 2017, pp. 168–171.
[ 17 [ محمد علی بهشتی نیا، وحید نعمتی ابوذر، "ترکیب روش های فرایند تحلیل سلسله مراتبی فازی و تاپسیس فازی برای انتخاب تامین
کنندگان )مطالعه موردی: شرکت تبلیغاتی("، مدلسازی در مهندسی، دورهی 15 ، شمارهی 48 ، بهار 139۶ ، صفحه 217 - 229 .
[18] G. Maroni, M. Ermidoro, F. Previdi, G. Bigini, "Automated detection, extraction and counting of acne lesions for automatic evaluation and tracking of acne severity", 2017 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 27 Nov 2017, pp. 1–6.