موقیعت‌یابی در اینترنت اشیاء با استفاده از الگوریتم بهینه سازی ازدحام ذرات مرتبه کسری آشوبی

نوع مقاله : مقاله برق

نویسندگان

1 دانشکده برق و کامپیوتر، دانشگاه حکیم سبزواری،سبزوار ایران

2 دانشگاه حکیم سبزواری، دانشکده برق و کامپیوتر

10.22075/jme.2019.17868.1722

چکیده

موقعیت یابی دقیق و سریع در اینترنت اشیاء یک نیاز اساسی در گسترش استفاده از برنامه های کاربردی برای این شبکه ها می باشد. به دلیل محدود بودن توان محاسباتی گره های حسگر و محدود بودن ظرفیت انرژی این گره ها، کاهش پیچیدگی محاسباتی و همچنین کاهش سربار ارتباطی در الگوریتم های موقعیت یابی برای این شبکه ها، اهمیت حیاتی دارد. در این مقاله، الگوریتمی مبتنی بر بهینه سازی ازدحام ذرات (PSO) به منظور موقعیت یابی دقیق و سریع گره های حسگر در اینترنت اشیاء ارائه می شود. به طور کلی قرار گرفتن در نقاط بهینه محلی و نرخ همگرایی آهسته، دو ضعف اساسی الگوریتم PSO استاندارد می‌باشد. در الگوریتم پیشنهاد شده با بکارگیری نظریه آشوب، از قرار گرفتن در نقاط بهینه محلی جلوگیری شده و همگرایی کلی الگوریتم بهبود می یابد. به علاوه با بهره گرفتن از مشتقات مرتبه کسری، نرخ همگرایی ذرات به سمت جواب بهینه تسریع می‌یابد. ارزیابی کارایی الگوریتم با اجرای آن بر روی توابع آزمون خاص انجام می‌شود. نتایج شبیه‌سازی بهبود کارایی الگوریتم پیشنهادی در موقعیت یابی گره های حسگر در اینترنت اشیاء را نشان می‌دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Localization in IoT by using Fractional Order Chaotic Particle Swarm Algorithm Optimization

نویسندگان [English]

  • Ali Ebrahimi 1
  • Ahmad Hajipour 2
  • Hamidreza Tavakoli 2
1 Department of Electrical and Computer Engineering,Hakim Sabzevari University, Sabzevar, IRAN
2 Department of Electrical and Computer Engineering, Hakim Sabzevari University
چکیده [English]

The accurate and fast localization in the Internet of Things is an essential requirement in expanding the use of applications for these networks. Due to limited computing power of sensor nodes and the limited power capacity of these nodes, reducing computational complexity and reducing communication overhead in localization algorithms is critical. In this paper, a particle swarm optimization based algorithm is proposed for localization of sensor nodes in IoT. In general, trapping in local optima and the slow convergence rate are two main weaknesses of the classic PSO. In the proposed algorithm, using the chaos theory, trapping in local optima is prevented and convergence of the algorithm is improved. In addition, using the fractional derivatives, the particles convergence rate accelerates to the optimal solution. The performance evaluation of the algorithm is performed by its implementation on specific test functions. Simulation results exhibit the effectiveness of the proposed algorithm in localization of sensor nodes in IoT.

کلیدواژه‌ها [English]

  • Particle swarm optimization
  • Fractional derivatives
  • Chaos
  • Internet of Things
  • Sensor node localization
[1] C-W. Tsai, C.-F. Lai and A.V. Vasilakos, "Future internet of things:open issues and challenges", Wireless Networks, Vol. 20, No. 8, 2014, pp. 2201–2217.
[2] S. Hasan and E. Curry, "Thingsonomy: Tackling variety in internet ofthings events", IEEE Internet Computing, Vol. 19, No. 2, 2015, pp. 10–18.
[3] X. Li, R. Lu, X. Liang, X. Shen, J. Chen and X. Lin, "Smart community:an internet of things application", IEEE Communications Magazine, Vol. 49, No. 11, 2011, pp. 68–75.
[4] Z. Chen, F. Xia, T. Huang, F. Bu and H. Wang, "A localization methodfor the internet of things", The Journal of Supercomputing, Vol. 63, No. 3, 2013, pp. 657–674.
[5] S. Cirani, L. Davoli, G. Ferrari, R. Leone, P. Medagliani, M. Picone and L. Veltri, "A scalable and self-configuring architecture for servicediscovery in the internet of things", IEEE Internet of Things Journal, Vol. 1, No. 5, 2014, pp. 508–521.
[6] S. Raza, L. Wallgren and T. Voigt, "Svelte: Real-time intrusion detectionin the internet of things", Ad hoc networks, Vol. 11, No. 8, 2013, pp. 2661–2674.
[7] L. Zhou and H.-C. Chao, "Multimedia traffic security architecture for the internet of things", IEEE Network, Vol. 25, No. 3, 2011, pp. 35–40.
[8] J. Hightower and G. Borriello, "A survey and taxonomy of location systems for ubiquitous computing", IEEE computer, Vol. 34, No. 8, 2001, pp. 57–66.
[9] N. Bulusu, J. Heidemann and D. Estrin, "Gps-less low-cost outdoor localization for very small devices", IEEE personal communications, Vol. 7, No. 5, 2000, pp. 28–34.
[10] S. Pandey and S. Varma, "A range based localization system in multihop wireless sensor networks: A distributed cooperative approach", Wireless Personal Communications, Vol. 86, No. 2, pp. 2016, 615–634.
[11] M. Aziz, M.-H. Tayarani-N and M.R. Meybodi, "A two-objective memetic approach for the node localization problem in wireless sensor networks", Genetic Programming and Evolvable Machines, Vol. 17, No. 4, 2016, pp. 321–358.
[12] M.X. Cheng and W.B. Wu, “A model-free localization method for sensor networks with sparse anchors”, in Communications (ICC), 2016 IEEE International Conference on. IEEE, pp. 1–7.
[13] A. Pal, "Localization algorithms in wireless sensor networks: Current approaches and future challenges", Network protocols and algorithms, Vol. 2, No. 1, 2010, pp. 45–73.
[14] G. Mao, B. Fidan and B. D. Anderson, "Wireless sensor network localization techniques", Computer networks, Vol. 51, No. 10, 2007, pp. 2529–2553.
[15] S. Sivakumar and R. Venkatesan, "Meta-heuristic approaches for minimizing error in localization of wireless sensor networks", Applied SoftComputing, Vol. 36, 2015, pp. 506–518.
[16] D. Miorandi, S. Sicari, F. De Pellegrini and I. Chlamtac, "Internet ofthings: Vision, applications and research challenges", Ad Hoc Networks, Vol. 10, No. 7, 2012, pp. 1497–1516.
[17] J. Cota-Ruiz, P. Rivas-Perea, E. Sifuentes and R. Gonzalez-Landaeta, "A recursive shortest path routing algorithm with application for wireless sensor network localization", IEEE Sensors Journal, Vol. 16, No. 11, 2016, pp. 4631–4637.
[18] J. Cheng and L. Xia, "An effective cuckoo search algorithm for node localization in wireless sensor network", Sensors, Vol. 16, No. 9, 2016, p. 1390.
[19] V. Nagireddy, P Parwekar and Tk. Mishra, "Comparative Analysis of PSO-SGO Algorithms for Localization in Wireless Sensor Networks", InInformation Systems Design and Intelligent Applications, 2019, pp. 401-409.
[20] K. Hu, X. Song, Z. Sun, H. Luo and Z. Guo, "Localization Based on MAP and PSO for Drifting-Restricted Underwater Acoustic Sensor Networks", Sensors, Vol. 19, No. 1, 2019, pp. 71-79.
[21] I.F.M. Zain and S.Y. Shin, "Distributed localization for wireless sensor networks using binary particle swarm optimization (bpso)", in 2014.
[22] Y. Xuerong, C. Hao, L. Huimin, C. Xinjun and Y. Jiaxin, "Multi-Objective Optimization Design for Electromagnetic Devices With Permanent Magnet Based on Approximation Model and Distributed Cooperative Particle Swarm Optimization Algorithm", IEEE Transactions on Magnetics Ma, Vol. 54, No.3, 2018, pp.1-5.
[23] X. Wang, G. Wang and Y. Wu, "An Adaptive Particle Swarm Optimization for Underwater Target Tracking in Forward Looking Sonar Image Sequences", IEEE Access, Vol. 6, No. 1, 2018, pp.33-43.
[24] حسین شریف‌زاده و نیما امجدی، «توزیع بهینه توان راکتیو با استفاده از الگوریتم بهینه‌سازی دسته ذرّات»، مجله مدل‌سازی در مهندسی، دوره 4، شماره 18، 1388، صفحه 67-73.
[25] روح‌الله مقصودی، یعقوب حیدری و بهزاد مشیری، «یک تحلیل مقایسه‌ای از الگوریتم‌های هوش جمعی کلونی زنبور مصنوعی و بهینه‌سازی گروهی ذرّات در طراحی یک کنترل‌کننده PID فازی کسری و پیاده‌سازی آن بر روی موتورDC »، مجلة مدل‌سازی در مهندسی، دوره 11، شماره 35، 1392، صفحه 11-23.
[26] ابراهیم اسدی گنگرج، فاطمه بزرگ‌نژاد و محمدمهدی پایدار، «توسعه روش‌های فراابتکاری برای حل مسئله زمان‌بندی نیروی انسانی در محیط جریان کارگاهی»، مجلة مدل‌سازی در مهندسی، دوره 16، شماره 54، 1397، صفحه 283-293.
 [27] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory”, In Micro Machine and Human Science, Proceedings of the 6th International Symposium on. IEEE, 1995, pp. 39-43.
[28] S. Poursiah Navi, E. Toreini, M. Mehrnejad and S. Kazem, "Analysis of The Usage of Chaotic Theory in Data Clustering Using Particle Swarm Optimization", Indian Journal of Science, Vol 4, No. 3, 2014, pp. 335-353.
[29] W. Liu, N. Luo, G. Pan and A. Ouyang, "Chaos particle swarm optimization algorithm for optimization problems", International Journal of Pattern Recognition and Artificial Intelligence, Vol. 32, No. 11, 2018.
[30] B. Liu, L. Wang, Y.-H. J, F. Tang and D.-X. Huang, "Improved particle swarm optimization combined with chaos", Chaos, Solitons & Fractals, Vol. 25, No. 5, 2005, pp. 1261-1271.
[31] X. Tang, L. Zhuang and Ch. Jiang, "Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization", Expert Systems with Applications, Vol. 36, No. 9, 2009, pp. 11853-11857.
[32] T. Zhu T, B. Li and H. Zheng, "Optimization for Power System of Electric Vehicle Based on CPSO", SAE Technical Paper, 2019.
[33] D. Tian and T. Zhao, "Particle swarm optimization based on tent map and logistic map", Journal of Shaanxi University of Science and Technology, Vol. 28, 2010, pp. 17–23.
[34] D. Tian, "Particle swarm optimization with chaos-based initialization for numerical optimization. " Intelligent Automation & Soft Computing,Vol. 12, No.6, 2017, pp. 1-12.
[35] J. Sabatier, O.P. Agrawal and J.A. Tenreiro Machado, Advances in fractional calculus, Springer, 2007.
[36] M. Couceiro and S. Sivasundaram, "Novel fractional order particle swarm optimization", Applied Mathematics and Computation, Vol. 283, 2016, pp. 36-54.
[37] M. Gang, Z. Wei, C.A. Xiaolin, "novel particle swarm optimization algorithm based on particle migration", Applied Mathematics and Computation, Vol. 5, No. 218, 2016, pp. 6620-6626.