آنالیز تئوری بر پایه روش CFD جهت ارزیابی عملکرد راکتور غشائی پالادیوم-نقره در مقایسه با راکتور معمولی طی فرآیند هیدروژن زدایی از سیکلوهگزان

نوع مقاله : مقاله شیمی

نویسندگان

1 گروه مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی ارومیه، ارومیه، استان آذربایجان غربی، ایران

2 گروه مهندسی شیمی-طراحی فرایند، دانشکده مهندسی شیمی، دانشگاه صنعتی ارومیه، ارومیه، ایران

10.22075/jme.2020.18801.1782

چکیده

در مطالعه‌ی حاضر، عملکرد راکتور غشائی پالادیوم-نقره طی واکنش هیدروژن زدایی از سیکلوهگزان (DCH) بر پایه روش دینامیک سیالات محاسباتی (CFD)، مدلسازی و شبیه‌سازی شده است. در سالهای اخیر، تولید هیدروژن به دلیل داشتن کاربردهای صنعتی و انرژی پاک، حائز اهمیت است. لذا فرآیند هیدروژن زدایی از سیکلوهگزان به دلیل تولید هیدروژن عاری از کرین دی اکسید و کرین مونواکسید و همچنین دارا بودن ظرفیت بالایی از هیدروژن، مورد توجه قرار گرفته است. به همین منظور یک مدل دو بعدی متقارن همدما برای راکتور غشائی پالادیمی ارائه شده است. در این راستا پس از مدلسازی و شبیه سازی عملکرد راکتور بستر ثابت و مقایسه‌ی نتایج آن با داده‌های آزمایشگاهی، مشاهده گردید تطابق خوبی (4 درصدخطا) بین نتایج تئوری و آزمایشگاهی حاصل شده است. به منظور درک بهتر از کارائی راکتور غشائی در طی واکنش DCH، تاثیر پارامترهای مختلف عملیاتی (دمای واکنش، فشار واکنش، فاکتورگازجاروبی و آرایش جریان) بر روی مفاهیم درصد تبدیل سیکلوهگزان و درصد بازیابی هیدروژن بررسی شده‌اند. به عنوان یک نتیجه کلی در تمامی شرایط عملیاتی، راکتور غشائی پالادیمی با جریان ناهمسو (MRC) نسبت به راکتور غشائی با جریان همسو (MR) و راکتور بستر ثابت معمولی(TR) عملکرد بهتری را نشان داده است. به عنوان مثال درصد تبدیل سیکلوهگزان با افزایش دما از 430 تا 490 کلوین، برای راکتور MRC از 4/28 تا 100 درصد، راکتور MR از 1/10 تا 75/77 و راکتور TR از 42/7 تا 29/46 افزایش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical analysis based on CFD method for evaluation of Pd-Ag Membrane reactor performance in comparison with conventional reactor during dehydrogenation of cyclohexane

نویسندگان [English]

  • kamran ghasemzadeh 1
  • Milad Ghahremani 2
1 chemical engineering department, Urmia university of technology, Urmia, West Azerbaijan, Iran
2 Chemical engineering faculty, Urmia university of thechnology, Urmia, Iran
چکیده [English]

In the present study, the performance of the palladium-silver membrane reactor during the cyclohexane dehydrogenation (DCH) reaction is modeled and simulated based on the computational fluid dynamics (CFD) method. In recent years, hydrogen production has been important due to its industrial applications and clean energy. Therefore, the dehydrogenation process of cyclohexane has been considered due to the production of crude dioxide and crane monoxide-free hydrogen as well as high hydrogen capacity. For this purpose, a symmetric two-dimensional model is proposed for the palladium membrane reactor. In this regard, after modeling and simulating the performance of the fixed bed reactor and comparing its results with the laboratory data, a good agreement (4% error) was obtained between theoretical and laboratory results. In order to better understand the performance of the membrane reactor during the DCH reaction, the influence of various operating parameters (reaction temperature, reaction pressure, adsorption factor and flow arrangement) on the concepts of cyclohexane conversion percentage and hydrogen recovery percentage have been investigated. As a general result in all operating conditions, the PdC membrane reactor (MRC) showed better performance than the synchronous flow membrane reactor (MR) and conventional fixed bed reactor (TR). For example, the cyclohexane conversion rate increased with increasing temperature from 430 to 490 K, for MRC reactor from 28.4 to 100%, MR reactor from 10.1 to 77.75 and TR reactor from 7.42 to 46.29.

کلیدواژه‌ها [English]

  • Modeling and Simulation
  • Palladium Membrane Reactor
  • Dehydrogenation
  • Cyclohexane
  • Hydrogen production
[1] S.Kumar, T. Gaba and S. Kumar, "Simulation of catalytic dehydrogenation of cyclohexane in zeolite membrane reactor", International Journal of Chemical Reactor Engineering, Vol. 7, No. 1, 2009, pp. 1-39‏.
[2] K. Akamatsu, Y. Ohta, T. Sugawara, N. Kanno, K. Tonokura, T. Hattori and S.I. Nakao, "Stable high-purity hydrogen production by dehydrogenation of cyclohexane using a membrane reactor with neither carrier gas nor sweep gas", Journal of Membrane Science, Vol. 330, No. (1-2), 2009, pp. 1-4‏.
[3] K.Ghasemzadeh, N.J. Harasi, A. Iulianelli and A. Basile "Theoretical evaluation of various configurations of silica membrane reactor in methanol steam reforming using CFD method", International Journal of Hydrogen Energy. In press, corrected proof ,2019, https://doi.org/10.1016/j.ijhydene.2019.05.090.
]4 [رحمان زینالی، کامران قاسم‌زاده و علیرضا بهروزسرند، «مدل‌سازی عملکرد غشای نانوساختار گرافنی جهت جداسازی هیدروژن به کمک روش دینامیک سیالات محاسباتی»،‌ مدل‌سازی در مهندسی، دوره 16، شماره 55، 1397، صفحه 77-86.
[5] H. Ping, G. Xu and S. Wu, "System optimization of cyclohexane dehydrogenation under multiphase reaction conditions using the uniform design method", international journal of hydrogen energy, Vol. 40, No. (4-6), 2015, pp. 15923-15932.‏‏
]6 [ نیما احمدی، عبدالرحمن دادوند، ایرج میرزایی و سجاد رضازاده،‌ «بررسی عددی عملکرد پیل سوختی پلیمری دو کاناله با جریان گاز ناهمسو»، مجله مدل‌سازی در مهندسی، دوره 16، شماره 53، 1397، صفحه 39-51.
[7] Z. Xia, H. Lu, H. Liu, Z. Zhang and Y. Chen, "Cyclohexane dehydrogenation over Ni-Cu/SiO2 catalyst: Effect of copper addition", Catalysis Communications, Vol. 90, 2017, pp. 39-42.‏
[8] Z. Xia, H.Liu, H.Lu, Z.Zhang and Y. Chen, "Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation", Applied Surface Science, Vol. 422, 2017, pp. 905-912.‏
[9] R. Ghani, F. Boostani and D. Iranshahi, "Analysis of the combined ammonia production and cyclohexane dehydrogenation by a novel bifunctional reactor", Vol. 33, No. 7, 2019, pp. 6717-6726.‏
[10] N. Itoh and K. Mimura, "Computational fluid dynamics (CFD) analysis of membrane reactors: simulation of single-and multi-tube palladium membrane reactors for hydrogen recovery from cyclohexane", In Handbook of Membrane Reactors, Woodhead Publishing, Vol.1 ,2013, pp. 464-495.‏
]11 [محسن مهدی‌پور قاضی و محمدرضا مویدی، «مدل‌سازی ریاضی و شبکه عصبی انتقال جرم در غشاهای مایع آمین گلایکول برای جداسازی دی‌اکسید کربن از هوا»، مجله مدل‌سازی در مهندسی، دوره 14، شماره 47، 1395، صفحه 51-60.
[12] N. Itoh, W. C.Xu and K. Haraya, "Basic experimental study on palladium membrane reactors", Journal of membrane science, Vol. 66, No. (2-3), 1992, pp. 149-155.
[13] N. Itoh, S. Watanabe, K. Kawasoe, T. Sato and T. Tsuji. "A membrane reactor for hydrogen storage and transport system using cyclohexane–methylcyclohexane mixtures", Desalination, Vol. 234, No. (1-3), 2008, pp. 261-269.
[14] H.S. Yang and C.T. Chou, "Non-isothermal simulation of cyclohexane dehydrogenation in an inert membrane reactor with catalytic pellets in the feed-side chamber", Journal of the Chinese Institute of Chemical Engineers, Vol. 39, No. 3, 2008, pp. 227-235.‏
]15 [مجید پاکیزه، رضا کاشفی و سعید زینالی هریس، «کاربرد مدل‌های تراوایی در مدل‌سازی ریاضی فرایند دی هیدروژناسیون سیکلوهگزان در راکتور غشایی زئولیتی نانوساختار»، نشریه علوم و مهندسی جداسازی، دوره 4، شماره 1، 1391، صفحه 1-12.
[16] D. Koutsonikolas, S. Kaldis, V.T. Zaspalis and G.P. Sakellaropoulos, "Potential application of a microporous silica membrane reactor for cyclohexane dehydrogenation", International Journal of Hydrogen Energy, Vol. 37, No. 21, 2012, pp. 16302-16307.‏
[17] W.H. Chen, C.H. Lin, Y.L. Lin, C.W. Tsai, R.Y. Chein and C.T. Yu, "Interfacial permeation phenomena of hydrogen purification and carbon dioxide separation in a non-isothermal palladium membrane tube", Chemical Engineering Journal, Vol. 305, 2016, pp. 156-168.
[18] B.H. Jeong, K.I. Sotowa and K. Kusakabe," Modeling of an FAU-type zeolite membrane reactor for the catalytic dehydrogenation of cyclohexane", Chemical Engineering Journal, Vol. 103, No. (1-3), 2004, pp. 69-75.‏
[19] N. Itoh, "A membrane reactor using palladium", AIChE Journal, Vol. 33, No. 9, 1987, pp. 1576-1578.‏‏
[20] B.H. Jeong, K.I. Sotowa and K. Kusakabe, "Catalytic dehydrogenation of cyclohexane in an FAU-type zeolite membrane reactor", Journal of Membrane Science, Vol. 224, No. (1-2), 2003, pp. 151-158.‏
[21] N. Itoh, E. Tamura, S. Hara, T. Takahashi, A. Shono, K. Satoh and T. Namba, "Hydrogen recovery from cyclohexane as a chemical hydrogen carrier using a palladium membrane reactor", Catalysis today, Vol. 82, No. (1-4), 2003, pp.119-125.
[22] K. Akamatsu, Y. Ohta, T. Sugawara, T. Hattori and S.I. Nakao, "Production of hydrogen by dehydrogenation of cyclohexane in high-pressure (1−8 atm) membrane reactors using amorphous silica membranes with controlled pore sizes", Industrial & Engineering Chemistry Research, Vol. 47, No. 24, 2008, pp. 9842-9847.‏