شناسایی هم زمان مکان و توابع شدت چندین منبع آلاینده فعال در رودخانه با استفاده از مدلسازی ریاضی

نوع مقاله : مقاله عمران

نویسندگان

1 کارشناسی ارشد سازه های آبی، دانشگاه تربیت مدرس، تهران،ایران

2 عضو هیات علمی گروه سازه های آبی دانشگاه تربیت مدرس

10.22075/jme.2019.17537.1706

چکیده

در پژوهش حاضر از مدل معکوس به منظور شناسایی مکان و توابع شدت منابع آلاینده نقطه‌ای مجهول در رودخانه‌ استفاده گردیده است. در این تحقیق، حل معکوس معادله جابه‌جایی- پراکندگی با استفاده از رویکرد ریاضی انجام شده است. از اهداف اصلی این مدل، شناسایی مکان منبع آلاینده در حالت وجود چندین منبع در رودخانه بدون داشتن هیچ‌گونه اطلاعات پیشین از منابع در چارچوب کاملاً ریاضی می‌باشد، به نحوی که مکان و تابع شدت هر یک منابع آلاینده فعال در رودخانه به صورت هم‌زمان شناسایی خواهد شد. نقطه قوت مدل معکوس ارائه شده آن است که، تنها با اندازه‌گیری منحنی غلظت-زمان از چند نقطه معدود، می‌توان مکان منبع را با بیش‌ترین دقت به دست آورد. همچنین، پس از یافتن مکان منبع در رودخانه، توابع شدت منابع آلاینده بازسازی می‌شود. صحت‌سنجی مدل معکوس ارائه شده توسط مثال‌های فرضی متعدد انجام شد. در مثال‌های فرضی، مکان و توابع شدت منابع آلاینده به صورت متفاوت در نظر گرفته شدند تا کارایی روش در شکل‌های مختلف توابع شدت مشاهده شود. از آن‌جا که در حالت واقعی، اندازه‌گیری‌ها دارای خطا می‌باشند، درصدی خطا به داده‌ها اضافه شد. در آخر، صحت‌سنجی بین حالت دقیق و نتایج حاصل شده از مدل معکوس انجام شد. در تمام موارد، نتایج مدل معکوس با دقت مناسبی قابل قبول بود.

کلیدواژه‌ها


عنوان مقاله [English]

Simultaneous identification of location and intensity of several active pollutant sources in river using mathematical modeling

نویسندگان [English]

  • akram dahmardan 1
  • Mehdi Mazaheri 2
  • jamal mohammadvali samani 2
1 Tarbiat Modares University, Water Structures Department
2 Tarbiat Modares University, Water Structures Department
چکیده [English]

In the present study, an inverse model was used to identify the location and functions of the intensity of unknown point sources in the river. In this research, the inverse solution of the advection-dispersion equation is carried out using a mathematical approach. The main objectives of this model are to identify the location of the pollutant in the presence of several sources in the river without any prior information from the sources in the entire mathematical framework. The strength point of the inverse model is that, by measuring the concentration-time curve from a few points, the source location can be obtained with the highest accuracy. Also, after finding the source location in the river, the functions of the intensity of the pollutant sources are restored. Verification of the inverse model provided by numerous hypothetical examples. In hypothetical examples, the location and intensity functions of the pollutant sources were considered differently so that the efficiency of the method is observed in different forms of intensity functions. Since in real mode, Measurements have errors, Error percent added to data. Finally, the verification was done between the exact state and the results of the inverse model. In all cases, the results of the inverse model were accurately acceptable.

کلیدواژه‌ها [English]

  • Restoration of the intensity of pollutant sources
  • Identify the location of the pollutant sources
  • inverse model
  • The advection-dispersion equation
[1] ز. شیخ خوزانی، خ. حسینی و م. رحیمیان، «مدل‌سازی بهره‌برداری از مخازن چندمنظوره به روش پویایی سیستم»، مجله مدل‌سازی در مهندسی، سال هشتم، شماره 21، تابستان 1389، صفحه 57-65.
[2] ح. محمدی، ا. اکبرپور و ع. باقری، «مدل‌سازی اندرکنش منابع آب و ارزش افزوده دشت بیرجند»، مجله مدل‌سازی در مهندسی، سال شانزدهم، شماره 55، زمستان 1397، صفحه 279-298.
[3] ح. نوذری و س. آزادی، «پیش‌بینی شوری آب زیرزمینی زیر لوله‌های زهکش با استفاده از شبکه عصبی»، مجله مدل‌سازی در مهندسی، سال شانزدهم، شماره 52، بهار 1397، صفحه 203-211.
[4] A. Hamdi, "The recovery of a time-dependent point source in a linear transport equation: Application to surface water pollution", Inverse Problems, Jun 2009, Vol. 25, No. 7, pp. 1-19.
[5] M.J. Colaco, H.R.B. Orlanda and G.S .Dulikravich, "Inverse and optimization problems in heat transfer", Journal of Brazilian Society of Mechanical Sciences and Engineering, Vol. 28, No .1, Jan 2006, pp. 1-24.
[6] S.C . Chapra, Surface water-quality modeling, Vol. 1, New York: McGraw-Hill, 1997
[7] م. مظاهری، «مدل ریاضی تشخیص منابع آلاینده در رودخانه: بازیابی مکان و شدت منابع آلاینده»، رساله دکتری، گروه سازه‌های آبی، دانشگاه تربیت مدرس، 1390.
[8] E. Milnes and P. Perrochet, "Simultaneous identification of a single pollution point source location and contamination time under known flow field conditions", Advances in Water Resources, Vol. 30, No. 12, December 2007, pp. 2439-2446.
[9] W.P. Cheng and Y. Jia, "Identification of contaminant point source in surface waters based on backward location probability density function method. Advances in Water Resources", Vol. 33, No. 4, 2010, pp. 397-410.
[10] R.M. Neupauer and J.L. Wilson, "Backward probability model using multiple observations of contamination to identify groundwater contamination sources at the Massachusetts Military Reservation", Water Resources Research, Vol. 41, No. 2, February 2005, pp. 1-14.
[11] A .Ghane, M. Mazaheri and J. Mohammad Vali Samani, "Location and release time identification of pollution point source in river networks based on the Backward Probability Method", Environmental Management, Vol. 180, September 2016, pp. 164-171.
[12] ع. قانع، م. مظاهری و ج. محمدولی سامانی، «کاربرد مدل احتمال برگشتی در ردیابی منابع آلاینده در رودخانه در شرایط وجود جریان غیریکنواخت»، محیط‌شناسی،شماره 42، تابستان 1395، صفحه 410-397.
[13] ع. قانع.، م. مظاهری و ج، محمدولی سامانی، «ردیابی مکان و زمان رهاسازی آلاینده در رودخانه بر اساس مدل ترکیبی آنالیز الحاقی و بهینه‌سازی»، مهندسی عمران شریف، دوره 2/33، شماره 2/3، پاییز 1396، صفحه 95-104.
[14] T.H. Skaggs and Z.J. Kabala, "Recovering the history of a groundwater contaminant plume: Method of quasi-reversibility", Water Resources Research, Vol. 31, No. 11, November 1995, pp. 2669-2673.
[15] R.M. Neupauer, B. Borchers and J.L. Wilson, "Comparison of inverse methods for reconstructing the release history of a groundwater contamination source", Water Resources Research, Vol. 36, No. 9, September 2000, pp. 2469-2475.
[16] J. Atmadja and A.C. Bagtezoglou, "Pollution source identification in heterogeneous porous media", Water Resources Research, Vol. 37, No. 8, August 2001, pp. 2113-2125.
[17] A.C. Bagtezoglou, and J. Atmadja, "Marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: Application to contaminant plume spatial distribution recovery", Water Resources Research, February 2003, Vol. 39, No. 2, pp. 1038–1052.
[18] T. Zhang and Q. Chen, "Identification of contaminant sources in enclosed spacey by a single sensor", Indoor Air, Vol. 17, No. 6, 2007, pp. 439-449.
[19] Z. Wang and J. Liu, "Identification of the pollution source from one-dimensional parabolic equation models", Vol. 219, No. 8, December 2012, pp. 3403-3413.
[20] M. Mazaheri, J. Mohammad Vali Samani and H. Mohammad Vali Samani, "Mathematical model for pollution source identification in rivers", Environmental Forensics, Nov. 2015, Vol. 16, No. 4, pp. 310-321.
[21] A. Hamdi, I. Mahfoudhi and A. Rejaiba, "Identification of time active limit with lower and upper bounds of total amount loaded by unknown sources in 2D transport equations", Engineering Mathematics, July 2015, Vol. 97, No. 1, pp. 101-117.
[22] A. El Badia, T. Ha-Duong and A. Hamdi, "Identification of a point source in a linear advection–dispersion–reaction equation: Application to a pollution source problem", Inverse Problems, May 2005, Vol. 21, No. 3, pp. 1-17.
[23] L. Ling, M. Yamamoto, Y.C. Hon and T. Takeuchi, "Identification of source locations in two-dimensional heat equations", Inverse Problems in Science and Engineering, June 2006, Vol. 22, No. 4, pp. 591-608.
[24] A. EL Badia and A. Hamdi, "Inverse source problem in an advection–dispersion–reaction system: application to water pollution", Inverse Problems, October 2007, Vol. 23, No. 5, pp. 2103-2120.
[25] Z. Wang and J. Liu, "Identification of the pollution source from one-dimensional parabolic equation models", Applied Mathematics and Computation, March 2008, Vol. 219, No. 8, pp. 3403-3413.
[26] A. Hamdi, "Inverse source problem in a 2D linear evolution transport equation: Detection of pollution source", Inverse Problems in Science and Engineering, Oct 2011, Vol. 20, No. 3, pp. 401-421.
[27] A. Hamdi, and I. Mahfoudhi, "Inverse source problem in a one-dimensional evolution linear transport equation with spatially varying coefficients: Application to surface water pollution", Inverse Problems in Science and Engineering,Jan 2013, Vol. 21, No. 6, pp. 1007-1031.
[28] R.C. Aster, B. Borchers and C.H .Thurber, Parameter Estimation and Inverse Problems, San Diego: Elsevier Academic Press, 2004.
[29] A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems, Washington, D.C: Winston & Sons, 1977.