توسعه و اصلاح مدل حرارتی فرایند جوشکاری اصطکاکی اغتشاشی با پین خارج از مرکز

نوع مقاله : مقاله مکانیک

نویسندگان

1 گروه مکانیک،دانشکده مکانیک، دانشگاه تبریز، تبریز، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه تبریز

3 تبریز بلوار 29 بهمن - دانشگاه تبریز دانشکده مهندسی مکانیک ساختمان 14

چکیده

جوشکاری اصطکاکی اغتشاشی (FSW) یکی از روش‌های جوشکاری حالت جامد می‌باشد. یکی از عوامل تاثیرگذار در خواص مکانیکی و متالوژیکی اتصال نهایی، هندسه ابزار می‌باشد که با طراحی صحیح آن می‌توان در نهایت به اتصالی با کیفیت بهینه دست یافت. از جمله اصلاحات و موارد مناسب جهت بهبود خواص مکانیکی اتصال نهایی، خارج از مرکز نمودن پین ابزار نسبت به شانه ابزار است. خارج از مرکز نمودن پین موجب خواهد شد که حرارت ایجاد شده در ناحیه بزرگ‌تری توزیع ‌یابد و حجم ماده تغییر شکل یافته توسط پین ابزار افزایش ‌یابد. در پژوهش حاضر با استفاده از روابط تحلیلی به توسعه مدلی حرارتی برای ابزار با پین خارج از مرکز پرداخته شده است، مدل اصلاح شده تابعی از ضریب اصطکاک و تنش تسلیم وابسته به دما می‌باشد و در آن تاثیر پارامترهای هندسی ابزار بر میزان حرارت تولیدی در فرایند مورد نظر قرار گرفته است. پس از توسعه روابط، جهت صحه‌سنجی مدل از شبیه‌سازی سه بعدی به واسطه پکیج اجزاء محدودABAQUS و کدنویسی شار حرارتی به زبان فرترن در قالب دو سابروتین USDFLD وDFLUX استفاده شده است و نتایج توزیع دما از مدل توسعه داده شده با نتایج تجربی و تحلیلی مدل‌های پیشین مورد مقایسه قرار گرفته است. بر اساس نتایج بدست آمده مدل حرارتی توسعه داده شده با دقت بالایی قادر به پیش‌بینی توزیع حرارت و دمای ماکزیمم در فرایند FSW با ابزار دارای پین خارج از مرکز می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Development and modification of the thermal model of the friction stir welding process with an eccentric pin

نویسندگان [English]

  • amir ghiasvand 1
  • Soran Hassanifard 2
  • Mohammad Zehsaz 3
1 Department of Mechanic, Tabriz University, Tabriz, 5166614766, Iran
2 Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.
3 Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.
چکیده [English]

Friction stir welding (FSW) is one of the solid state bonding methods. One of the influential factors in the mechanical and metallurgical properties of the final joint is the tool shape, which, with its proper design, can ultimately achieve optimal joint quality. Among the improvements and modifications to improve the mechanical properties of the final joint is the out-centering of the tool pin against the tool shoulder. Off centering the pin will cause the heat generated in the larger area to be distributed and the volume of the deformed material will increase with the eccentric tool pin. In the present study, the development of a thermal model for tool with an out of center pin has been addressed. The modified model is a function of the temperature dependent friction coefficient and the temperature dependent yield stress, in which the effect of key parameters on the amount of heat generated in the FSW process is considered. In order to validate the developed model, three-dimensional simulation using ABAQUS package and two subroutines of USDFLD and DFLUX have been used. The results of the temperature distribution of the developed model have been compared with the experimental and analytical results of previous studies. Based on the results, the present thermal model with high precision is able to predict the maximum temperature and temperature distribution in the FSW process with an out of center tool pin.

کلیدواژه‌ها [English]

  • Friction stir welding
  • Thermal model
  • Tool shape
  • Eccentric pin
  • Numerical simulation
 
[1] W. Thomas, E. Nicholas, J.C. Needham, M. Murch, P. Templesmith and C. Dawes, 1991, "Friction stir welding", International patent application No. PCT/GB92102203 and Great Britain patent application, 1991, No. 9125978.8.
[2] R.S. Mishra, P.S. De and N. Kumar, Friction stir welding and processing: science and engineering. Springer, 2014.
[3] S. Amini, M. Amiri and A. Barani, "Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy", The International Journal of Advanced Manufacturing Technology, Vol. 76, No. 1-4, 2015, pp. 255-261.
[4] M. Ahmed, S. Ataya, M.E.-S. Seleman, H. Ammar and E. Ahmed, "Friction stir welding of similar and dissimilar AA7075 and AA5083", Journal of Materials Processing Technology, Vol. 242, 2017, pp. 77-91.
[5] عباس هنربخش رئوف و احسان غریبشاهیان، «شبیه‌سازی المان محدود جوشکاری اغتشاشی اصطکاکی و تأثیر پارامترهای مؤثّر بر آن در آلیاژ 6061 آلومینیوم»، مجلة مدل‌سازی در مهندسی، دورة 11، شمارة 35، زمستان 1392، صفحة 1-9.
[6] منصور مردعلی‌زاده، محمّدرضا سلیمانی یزدی، محمّدعلی صفرخانیان، «مدل‌سازی تجربی و بررسی تأثیر پارامترهای فرایند جوشکاری اصطکاکی اختلاطی آلیاژ آلومینیوم 5456 با استفاده از روش سطح پاسخ»، مجلة مدل‌سازی در مهندسی، دورة 12، شمارة 38، پاییز 1393، صفحة 103-116.
[7] محمّد صدیقی، فرشاد نظری و داود افشاری، «بررسی تأثیر پارامترهای جوشکاری بر اندازة دکمة جوش در جوشکاری مقاومتی نقطه‌ای آلیاژهای منیزیم»، مجلة مدل‌سازی در مهندسی، دورة 14، شماره 44، بهار 1395، صفحة 1-9.
[8] M.D. Nouri and H. Hatami, "Experimental and numerical study of the effect of longitudinal reinforcements on cylindrical and conical absorbers under impact loading", Indian Journal of Science and Technology, Vol. 7, No. 2, 2014, p. 199.
[9] M. Shariati, H. Hatami, H. Eipakchi, H. Yarahmadi and H. Torabi, "Experimental and numerical investigations on softening behavior of POM under cyclic strain-controlled loading", Polymer-Plastics Technology and Engineering, Vol. 50, No. 15, 2011, pp. 1576-1582.
[10] M. Shariati, H. Hatami and M.D. Nouri, "Experimental investigations on the softening and ratcheting behaviors of steel cylindrical shell under cyclic axial loading", Journal of Computational and Applied Research in Mechanical Engineering, Vol. 2, No. 2, 2013, pp. 11-22.
[11] روح‌الله وحدتی و مهرداد عضو امینیان، «شبیه‌سازی جوش نقطه‌ای مقاومتی به روش MLPG جهت تعیین تنش‌های حرارتی- مکانیکی و تنش‌های پسماند»، مجلة مدل‌سازی در مهندسی، دورة 11، شماره 34، پاییز 1392، صفحة 63-75.
[12] فرهاد حاجی ابوطالبی و شهریار محقّقیان، «شبیه‌سازی عددی فرایندهای ماشین‌کاری با استفاده از معیار آسیب برشی هوپیوترا»، مجلة مدل‌سازی در مهندسی، دورة‌ 15، شمارة 49، تابستان 1396، صفحة 101-109.
[13] B. Meyghani, M. Awang, S.S. Emamian, M. Nor, M. Khalid and S.R. Pedapati, "A comparison of different finite element methods in the thermal analysis of Friction Stir Welding (FSW)", Metals, Vol. 7, No. 10, 2017, p. 450.
[14] A. Ghiasvand and S. Hassanifard, "Numerical simulation of FSW and FSSW with pinless tool of AA6061-T6 Al alloy by CEL approach", Journal of Solid and Fluid Mechanics, Vol. 8, No. 3, 2018, pp. 65-75.
[15] Y.J. Chao, X.Qi and W. Tang, "Heat transfer in friction stir welding—experimental and numerical studies", Journal of manufacturing science and engineering, Vol. 125, No. 1, 2003, pp. 138-145.
[16] Ø. Frigaard, Ø. Grong and O. Midling, "A process model for friction stir welding of age hardening aluminum alloys", Metallurgical and materials transactions A, Vol. 32, No. 5, 2001, pp. 1189-1200.
[17] C. Chen and R. Kovacevic, "Finite element modeling of friction stir welding—thermal and thermomechanical analysis", International Journal of Machine Tools and Manufacture, Vol. 43, No. 13, 2003, pp. 1319-1326.
[18] M. Song and R. Kovacevic, "Thermal modeling of friction stir welding in a moving coordinate system and its validation", International Journal of Machine Tools and Manufacture, Vol. 43, No. 6, 2003, pp. 605-615.
[19] H. Schmidt, J. Hattel and J. Wert, "An analytical model for the heat generation in friction stir welding", Modelling and Simulation in Materials Science and Engineering, Vol. 12, No. 1, 2003, p. 143.
[20] M. Riahi and H. Nazari, "Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation", The International Journal of Advanced Manufacturing Technology, Vol. 55, No. 1-4, 2011, pp. 143-152.
[21] V.S. Gadakh and K. Adepu, "Heat generation model for taper cylindrical pin profile in FSW", Journal of Materials Research and Technology, Vol. 2, No. 4, 2013, pp. 370-375.
[22] A.R.S. Essa, M.M.Z. Ahmed, A.-K.Y.A. Mohamed and A.E. El-Nikhaily, "An analytical model of heat generation for eccentric cylindrical pin in friction stir welding", Journal of Materials Research and technology, Vol. 5, No. 3, 2016, pp. 234-240.
[23] M. Russell and H. Shercliff, "Analytical modelling of microstructure development in friction stir welding", 1999.
[24] P.A. Colegrove, "3 Dimensional flow and thermal modelling of the friction stir welding process", University of Adelaide, Department of Mechanical Engineering, 2001.
[25] H. Hibbit, B. Karlsson and E. Sorensen, "ABAQUS user manual, version 6.12", Simulia, Providence, RI, 2012.
[26] R. Nandan, G. Roy, T. Lienert and T. DebRoy, "Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel", Science and Technology of Welding and Joining, Vol. 11, No. 5, 2006, pp. 526-537.
[27] R. Nandan, G. Roy, T. Lienert and T. Debroy, "Three-dimensional heat and material flow during friction stir welding of mild steel", Acta materialia, Vol. 55, No. 3, 2007, pp. 883-895.
[28] S.J. Chapman, Fortran 90/95 for scientists and engineers. McGraw-Hill, Inc., 2003.
[29] L. MatWeb, "MatWeb: Material Property Data", línea]. Available: http://www. matweb. com/search/DataSheet. aspx, 2013.
[30] C.-Q. Huang and L.-l. Liu, "Application of the Constitutive Model in Finite Element Simulation: Predicting the Flow Behavior for 5754 Aluminum Alloy during Hot Working", Metals, Vol. 7, No. 9, 2017, p. 331.
[31] S.B. Aziz, M.W. Dewan, D.J. Huggett, M.A. Wahab, A.M. Okeil and T.W. Liao, "Impact of Friction Stir Welding (FSW) process parameters on thermal modeling and heat generation of aluminum alloy joints", Acta Metallurgica Sinica (English Letters), Vol. 29, No. 9, 2016, pp. 869-883.
[32] F. Al-Badour, N. Merah, A. Shuaib and A. Bazoune, "Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes", Journal of Materials Processing Technology, Vol. 213, No. 8, 2013, pp. 1433-1439.