ارائه یک مدل خطی دو مرحله‌ای جهت ارزیابی تأثیر تقاضای شارژ خودروهای برقی در ایستگاه‌های شارژ سریع بر تاب‌آوری شبکه توزیع فعال

نوع مقاله : مقاله برق

نویسندگان

1 دانشگاه صنعتی نوشیروانی بابل

2 گروه برق قدرت، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل

چکیده

تقاضای شارژ خودروهای برقی در ایستگاه‌های شارژ سریع می‌تواند تأثیر قابل‌توجهی بر مسئله بازآرایی و جزیره‌سازی شبکه توزیع داشته باشد. لذا در این مقاله، مسئله جزیره‌سازی دینامیکی و بازآرایی شبکه توزیع با در نظر گرفتن تأثیر متقابل شبکه‌های الکتریکی و حمل و نقل در قالب یک مدل دومرحله‌ای ارائه شده است. در مرحله اول، با در نظر گرفتن تمایل رانندگان خودروهای برقی به شارژ در ایستگاه‌های شارژ سریع نزدیک‌تر، مدلی خطی برای تعیین تقاضای شارژ ایستگاه‌های موجود پیشنهاد شده است. در مرحله دوم، یک مدل خطی آمیخته با عدد صحیح مبتنی بر سناریو با هدف حداکثرکردن شاخص تاب‌آوری شبکه توزیع مجهز به منابع تولید پراکنده با بهره‌گیری از طرح‌های جزیره‌سازی دینامیکی و بازآرایی پیشنهاد شده است. شاخص تاب‌آوری شامل دو هدف حداکثر‌کردن بازیابی بارهای شبکه و حداکثرکردن تأمین انرژی ایستگاه‌های شارژ سریع است. مدل پیشنهادی با اعمال چندین خطای هم‌زمان روی شبکه 118 شینه و حضور خودروهای برقی در شبکه ترافیکی 25 گره‌ای در نرم‌افزار GAMS، پیاده‌سازی شده است. نتایج شبیه‌سازی، کارایی مدل پیشنهادی را در ارزیابی تاب‌آوری شبکه توزیع فعال در حضور خودروهای برقی نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

proposing a linear two-step model for evaluating the impact of electric vehicles charging demand on fast charging stations on resiliency of active distribution network

نویسندگان [English]

  • mohammad alizadeh 1
  • meisam jaafari 1
  • majid shahabi 2
1 electrical faculty, babol industrial university
2 babol noshirvani university
چکیده [English]

Charging demand of electric vehicles in fast charging stations can have a significant impact on the process of distribution network reconfiguration and islanding. In this paper, the problem of dynamic islanding and reconfiguration of distribution network taking into account the interaction between the electrical and traffic networks is presented in the form of a two-stage model. In the first step, considering the tendency of electric vehicle to charge at nearby fast charging stations, a linear model has been proposed to determine the charging demand of the stations in the traffic network. In the second step, a scenario-based mixed integer linear model is proposed with the aim of maximizing the resiliency index of the distribution network equipped with dispersed production resources using dynamic islanding and reconfiguration plans. The resiliency index consists of two objectives, including maximizing network load recovery and maximizing the power supply of fast charging stations. In order to provide a realistic model, the uncertainty in predicting the productive capacity of renewable wind resources has been considered. The proposed model has been implemented on the 118 bus network by applying several simultaneous faults and the presence of electric vehicles in the 25-node traffic network in the GAMS software. The simulation results illustrate the effectiveness of the proposed model in evaluating the resiliency of the active distribution network in the presence of electric vehicles.

کلیدواژه‌ها [English]

  • Fast charging stations
  • reconfiguration
  • Resiliency
  • Dynamic Islanding
  • Electric vehicles
[1] M. Panteli, D.N. Trakas, P. Mancarella and N.D. Hatziargyriou, "Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies", Proceedings of the IEEE, Vol. 105, No. 7, 2017, pp. 1202-1213.
[2] X. Liu, M Shahidehpour, Z. Li, X. Liu, Y. Cao and Z. Bie, "Microgrids for Enhancing the Power Grid Resilience in Extreme Conditions", IEEE Transactions on Smart Grid, Vol. 8, No. 2, 2017, pp. 589-597.
[3] Z. Bie, Y. Lin, G. Li and F. Li, "Battling the Extreme: A Study on the Power System Resilience", Proceedings of the IEEE, Vol. 105, No. 7, 2017, pp. 1253-1266.
[4] Z. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab and Y. Al-Turki, "Networked Microgrids for Enhancing the Power System Resilience", Proceedings of the IEEE, Vol. 105, No. 7, 2017, pp. 1289-1310.
[5] G. Liu, M. Starke, B. Xiao and K. Tomsovic, "Robust optimisation-based microgrid scheduling with islanding constraints", IET Generation, Transmission & Distribution, Vol. 11, No. 7, 2017, pp. 1820-1828.
[6] M.Z. El-Sharafy and H.E.Z. Farag "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids", Applied Energy, Vol. 206, 2017, pp. 1102-1117.
[7] C. Chen, J. Wang, F. Qiu and D. Zhao, "Resilient Distribution System by Microgrids Formation After Natural Disasters", IEEE Transactions on Smart Grid, Vol. 7, No. 2, 2016, pp. 958-966.
[8] T. Ding, Y. Lin, Z. Bie and C. Chen, "A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration", Applied Energy, Vol. 199, 2017, pp. 205-216.
[9] S. Mousavizadeh, M.R. Haghifam and M.H. Shariatkhah, "A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources", Applied Energy, Vol. 211, 2018, pp. 443-460.
]10 [محمّد علیزاده، میثم جعفری نوکندی، یامین سلطان مرادی، «مدل‌سازی و بهینه‌سازی مصرف انرژی در خانة هوشمند با حضور ذخیره‌ساز انرژی، سلول خورشیدی، خودروی برقی و پاسخگویی بار»، مجلة مدل‌سازی در مهندسی، دورة 17، شمارة 57، 1398، صفحة 215-226.
[11] P. Grahn, J. Munkhammar, J. Widén, K. Alvehag and L. Söder, "PHEV Home-Charging Model Based on Residential Activity Patterns", IEEE Transactions on Power Systems, Vol. 28, No. 3, 2013, pp. 2507-2515.
[12] S. Shao, M. Pipattanasomporn and S. Rahman, "Challenges of PHEV penetration to the residential distribution network", in 2009 IEEE Power & Energy Society General Meeting, 2009.
[13] D. Tang and P. Wang, "Nodal Impact Assessment and Alleviation of Moving Electric Vehicle Loads: From Traffic Flow to Power Flow", IEEE Transactions on Power Systems, Vol. 31, No. 6, 2016, pp. 4231-4242.
[14] K. Qian, C. Zhou, M. Allan and Y. Yuan, "Modeling of Load Demand Due to EV Battery Charging in Distribution Systems", IEEE Transactions on Power Systems, Vol. 26, No. 2, 2011, pp. 802-810.
[15] H. Zhang, S.J. Moura, Z. Hu and Y. Song, "PEV Fast-Charging Station Siting and Sizing on Coupled Transportation and Power Networks", IEEE Transactions on Smart Grid, Vol. 9, No. 4, 2018, pp. 2595-2605.
[16] D. Tang and P. Wang "Probabilistic Modeling of Nodal Charging Demand Based on Spatial-Temporal Dynamics of Moving Electric Vehicles", IEEE Transactions on Smart Grid, Vol. 7, No.2, 2016, pp. 627-636.
[17] S. Bae and A. Kwasinski, "Spatial and Temporal Model of Electric Vehicle Charging Demand", IEEE Transactions on Smart Grid, Vol. 3, No. 1, 2012, pp. 394-403.
]18[ سید محمّدباقر ساداتی، جمال مشتاق، میعادرضا شفیعی‌خواه، «تأثیر خودروهای الکتریکی و برنامه پاسخگویی بار بر بهره‌برداری بهینه از شبکة توزیع در چهارچوب یک مدل دوسطحی جدید»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 54، 1397، صفحة 53-68.
[19] J.G. Kim and M. Kuby, "The deviation-flow refueling location model for optimizing a network of refueling stations", International Journal of Hydrogen Energy, Vol. 37, No. 6, 2012, pp. 5406-5420.
[20] T. Ding, K. Sun, C. Huang, Z. Bie and F. Li, "Mixed-integer linear programming-based splitting strategies for power system islanding operation considering network connectivity", IEEE Systems Journal, Vol. 12, No. 1, 2015, pp. 350-359.
]21[ مسعود احمدی گرجی، نیما امجدی، «برنامه‌ریزی توسعه پویای شبکه‌های توزیع در حضور منابع تولید پراکنده با استفاده از یک الگوریتم بهینه‌سازی جدید دوسطحی»، مجلة مدل‌سازی در مهندسی، دورة 14، شمارة 44، 1395، صفحة 143-157.
]22[ جمشید آقائی، امین رحیمی رضایی، محمّدرضا کریمی، «هماهنگی نیروگاه‌های بادی و دستگاه‌های ذخیره‌ساز سیستم قدرت در مسئلة برنامه‌ریزی امنیت-مقیّد مشارکت واحدها با استفاده از بهینه‌سازی استوار»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 53، 1397، صفحة 207-220.
[23] T. Akbari and M.T. Bina, "Linear approximated formulation of AC optimal power flow using binary discretisation", IET Generation, Transmission & Distribution, Vol. 10, No. 5, 2016, pp. 1117-1123.
[24] D. Zhang , Z. Fu and L. Zhang, "An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems", Electric Power Systems Research, Vol. 77, No. 5, 2007, pp. 685-694.
[25] M.E. Khodayar, L. Wu and Z. Li, "Electric Vehicle Mobility in Transmission-Constrained Hourly Power Generation Scheduling", IEEE Transactions on Smart Grid, Vol. 4, No. 2, 2013, pp. 779-788.