شبیه‌سازی و اصلاح فرایند در ایستگاه تقویت فشار گاز، با هدف کاهش مصرف سوخت و کاهش آلودگی

نوع مقاله : مقاله شیمی

نویسندگان

1 استادیار مهندسی شیمی، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه صنعتی شیراز، شیراز، ایران

2 دانشکده مهندسی شیمی، نفت و گاز، دانشگاه صنعتی شیراز، شیراز، ایران

3 دانشکده مهندسی شیمی، دانشگاه صنعتی شیراز

4 استاد مهندسی شیمی، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه صنعتی شیراز، شیراز، ایران

چکیده

امروزه قوانین زیست‌محیطی سختگیرانه‌ای برای کاهش انتشار گازهای گلخانه‌ای وضع شده است. بنابراین استفاده از منابع حرارتی اتلافی می‌تواند راه‌حل مناسبی برای کاهش این نوع گازها باشد.‌ در این تحقیق، ابتدا فرایند تراکم فشار در یک ایستگاه تقویت فشار گاز بررسی، و با نرم‌افزار ASPEN-HYSYS شبیه‌سازی شده است، سپس با توجه به اینکه در ایستگاه مورد نظر، عملیات افزایش فشار گاز بوسیله توربوکمپرسور و عمل نم‌زدایی از گاز با حلال گلایکول انجام می‌گیرد، طراحی جدیدی به منظور کاهش مصرف سوخت در کوره گرم‌کن گلایکول و استفاده مجدد از گرمای خروجی دودکش توربین پیشنهاد شده است. در این طراحی، استفاده از انرژی هدررفت گازهای داغ خروجی از دودکش توربین برای گرم کردن گلایکول اشباع منجر به کاهش مصرف روزانه 5/2 میلیون فوت مکعب گاز شیرین می‌شود.
مقایسه نتایج حاصل از شبیه‌سازی فرایند پیشنهادی با داده‌های واحد عملیاتی، نشان می‌دهد که با این روش می‌توان به دمای℃198 برای احیاء گلایکول نیز دست یافت. همچنین، بازگردانی بخارات گلایکول خروجی از برج احیاء به چرخه مصرف، باعث صرفه‌جویی در حدود 8/188 کیلو‌گرم مول بر ساعت گلایکول می‌شود. در نهایت با انتقال گازهای خروجی از دودکش توربین (پس از تبادل حرارت با گلایکول اشباع) به منطقه ایمن در بیرون از ایستگاه تقویت فشار گاز، با کاهش انتشار آلاینده‌ها در محیط به بالابردن شاخص‌های مواجهه شغلی کمک شایانی می‌کند. ارزیابی اقتصادی فرایند مذکور نشان می‌دهد به کمک این روش با صرف هزینه‌ای معادل با 21340 میلیون ریال می‌توان به میزان 24017 میلیون ریال در روز از هزینه‌های واحد کم نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation and Modification of The Process at The Gas Compression Station to Reduce Fuel Consumption and Environmental Pollution

نویسندگان [English]

  • Seyyed Mohammad Jokar 1
  • Navab Zamaninejad 2
  • Payam Parvasi 3
  • Jafar Javanmardi 4
1 Department of Chemical, Petroleum and Gas Engineering, Shiraz University of Technology, Shiraz, Iran
2 Department of Chemical, Petroleum and Gas Engineering, Shiraz University of Technology, Shiraz, Iran
3 Department of Chemical, Petroleum and Gas Engineering, Shiraz University of Technology, Shiraz, Iran
4 Department of Chemical, Petroleum and Gas Engineering, Shiraz University of Technology, Shiraz, Iran
چکیده [English]

The environmental laws cause industries to find solutions for reducing greenhouse gas emissions. In this paper, the study and simulation of a domestic gas compression station by the Aspen-Hysys software has been considered. At this station, the gas turbines are applied to make mechanical energy from a combustible fuel to drive the compressors. Furthermore, the glycol dehydration process is used to absorb water from the natural gas stream. In order to reduce the glycol heater fuel consumption, the heat recovery of the turbine stacks, and restoring the exit glycol vapors, a new design is proposed and simulated. In this design, the heat of the flue gas leaving the turbine is transferred to the rich glycol stream exiting the absorption column. This will lead to a reduction in the daily consumption of sweet gas by 2.5 million cubic feet.
The comparison of the simulation results with plant data shows that the proposed process could achieve the temperature requirements of glycol regeneration (198 °C). By restoring the glycol vapors from the regeneration tower to the consumption cycle, it is possible to decrease the Glycol consumption by 188.8 kgmole/h. Finally, by transferring the flue gas from the turbine (after heat exchanging with rich glycol stream) to the safe area outside the gas compression station, it helps to prevent the release of hazardous pollutants and increase the occupational exposure indices. In addition, the cost evaluation shows that the proposed process is capable of saving 24017 million rials per day by consuming 21340 million rials.

کلیدواژه‌ها [English]

  • Heat Recovery
  • Process Simulation
  • ASPEN-HYSYS Software
  • Turbine stack
  • Glycol dehydration
  • Reducing fuel consumption
[1] S. Jokar, M. Rahimpour and A. Shariati, "Heat exchanger application for environmental problem-reducing in flare systems of an oil refinery and a petrochemical plant: Two case studies", Applied Thermal Engineering,Vol. 106, 2016. pp. 796-810.
[2] جابر ‌شمس و بهمن ‌کرمی، گاز طبیعی و پالایشگاه‌های گاز ایران، چاپ اول، انتشارات شرکت ملّی گاز ایران، تهران، 1394.
[3] حسین کاردری، آشنایی با ایستگاه­های تقویت فشار گاز، چاپ اول، انتشارات شرکت ملی گاز ایران، 1387.
[4] محمّدرضا علیگودرز، «مدل‌سازی عددی محفظة احتراق توربین 600SGT و تحلیل میدان جریان در شرایط کارکرد واقعی»، مجلة مدل‌سازی در مهندسی، دورة 10، شمارة 31، زمستان 1391، صفحة 93-108.
[5] مهدی محمّدی، سید مرتضی بیاره و محمّد کوثری، «مدل‌سازی عملکرد توربین‌های گازی سه‌محوره محرّک کمپرسور ایستگاه­های تقویت فشار گاز از دیدگاه اکسرژی»، مجلة مدل‌سازی در مهندسی، دورة 17، شمارة 56، بهار 1398، صفحة 33-50.
[6] سیف‌الله سعدالدین و سعید رستگار، «تحلیل اگزرژی در ایستگاه تقلیل فشار گاز طبیعی دروازه شهری»، مجلة مدل‌سازی در مهندسی، دورة 8، شمارة 22، پاییز 1389، صفحة 13-19.
[7] L.O. Nord, R. Anantharaman and O. Bolland, "Design and off-design analyses of a pre-combustion CO2 capture process in a natural gas combined cycle power plant", International Journal of Greenhouse Gas Control, 3 (4), 2009, pp. 385-392.
[8] V. Chintala, S. Kumar and J.K. Pandey, "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle", Renewable and Sustainable Energy Reviews,Vol. 81, 2018 p. 493-509.
[9] مهدی محمّدی، سید مرتضی بیاره و محمّد کوثری، «ارائة یک مدل ریاضی جهت بهینه‌سازی عملیات شبکه انتقال گاز»، مجلة مدل‌سازی در مهندسی، دورة 14، شمارة 44، بهار 1395، صفحة 93-104.
[10] C. Wang, B. He, S. Sun, Y. Wu, N. Yan, L. Yan and X. Pei, "Application of a low-pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant", Energy, Vol. 48, 2012, pp. 196-202.
[11] C. Sprouse and C. Depcik, "Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery", Applied thermal engineering, Vol. 51, 2013, pp. 711-722.
[12] M. Jalili, R. Cheraghi, M.M. Reisi and R. Ghasempour, "Energy and Exergy Assessment of a New Heat Recovery Method in a Cement Factory", Renewable Energy Research and Application, Vol.1, 2020, pp.123-134.
[13] مجید معیّری‌نیا، محمّدرضا حبیبی و کاظم اسماعیل‌پور، «شبیه‌سازی روش‌های بازیافت حرارت خروجی از اگزاست توربین گازجنرال الکتریک توسّط نرم‌افزار ترموفلو»، کنفرانس بین‌المللی علوم و مهندسی، امارات، 1394، https://www.civilica.com/Paper-NSOECE02-NSOECE02_222.html
[14] M.R. Rahimpour and S.M. Jokar, "Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring", Journal of hazardous materials, Vol. 209, 2012, pp. 204-217.
[15] A. Alklaibi, "Utilization of exhaust gases heat from gas turbine with air bottoming combined cycle", Energy, Vol. 133, 2017, pp. 1108-1120.
[16] Y. Cao, J. Ren, Y. Sang and Y. Dai, "Thermodynamic analysis and optimization of a gas turbine and cascade CO2 combined cycle", Energy Conversion and Management, Vol. 144, 2017, pp. 193-204.
]17[ قدرت قصابی، سید محمّدرضا هاشمی و علی‌اکبر خالدی، «مقایسة عددی سیکل های توربین گاز همراه با بازیاب حرارتی و تزریق بخار آب»، هفدهمین کنفرانس دینامیک شاره‌ها، شاهرود، دانشگاه صنعتی شاهرود- انجمن فیزیک ایران،‌ 1396، https://www.civilica.com/Paper-CFD17-CFD17_106.html
[18] T. Li, J. Liu, J. Wang, N. Meng and J. Zhu, "Combination of two-stage series evaporation with non-isothermal phase change of organic Rankine cycle to enhance flue gas heat recovery from gas turbine", Energy Conversion and Management, 185, 2019, pp.330-338.
[19] F.C.N. Silva, D. Flórez-Orrego and S. de Oliveira Junior, "Exergy assessment and energy integration of advanced gas turbine cycles on an offshore petroleum production platform", Energy Conversion and Management, 197, 2019, pp.111846.
[20] K.K. Srinivasan, P.J. Mago and S.R. Krishnan, "Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an Organic Rankine Cycle", Energy, 35(6):, 2010, pp. 2387-2399.
[21] Z. Liu and I.A. Karimi, "Simulating combined cycle gas turbine power plants in Aspen HYSYS", Energy conversion and management, Vol. 171, 2018, pp. 1213-1225.
[22] W.D. Seider, Product and process design principles: synthesis, analysis, and evaluation, 2th edition, John Wiley & Sons, 2002.
[23] M. Peters, Plant design and economics for chemical engineers, 5th edition, McGraw-Hill Education, 2002