بررسی عملکرد تکنیک های تعریف ناپیوستگی در حل عددی مسائل ترک به روش بدون شبکه

نوع مقاله : مقاله عمران

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه آزاد اسلامی واحد لارستان، لارستان، ایران

2 استادیار،دانشکده مهندسی عمران، دانشگاه آزاد واحد لارستان، لارستان، ایران

3 استادیار، دانشکده مهندسی عمران، دانشگاه آزاد اسلامی واحد لارستان، لارستان، ایران

4 استادیار، دانشکده مهندسی عمران، دانشگاه فسا، فسا، ایران

چکیده

در سال‌های اخیر تحقیقات متعددی جهت استفاده از روش‌های بدون شبکه با توجه به مزایای این روش‌ها جهت بررسی مسائل مکانیک شکست انجام گرفته است. به‌کارگیری روش‌های بدون شبکه در مکانیک شکست، به‌دلیل استفاده این روش‌ها از توابع شکل پیوسته، نیازمند اعمال اصلاحاتی در تابع شکل در نزدیکی سطح ناپیوستگی می‌باشد. در این پژوهش، روش حداقل مربعات گسسته به‌عنوان یک روش بدون شبکه واقعی، جهت حل مسائل صفحات حاوی ترک، با استفاده از تکنیک‌های تعریف ترک به‌کار گرفته شده ‌است. در این روش گسسته‌سازی حوزه مسئله، توسط نقاط گرهی غیر‌مرتبط صورت می‌گیرد و برای تقریب تابع از توابع شکل با درجه پیوستگی بالای حداقل مربعات متحرک استفاده شده است. هم‌چنین از فرم قوی معادلات جهت گسسته‌سازی معادلات استفاده می‌کند. روش حداقل مربعات گسسته،‌ مبتنی بر به حداقل رساندن مربعات باقی‌مانده‌ها در تعدادی از نقاط همسایه‌ی گره اصلی استوار است. شرایط مرزی به‌راحتی توسط ضرایب پنالتی اعمال می‌شود. جهت تعریف ناپیوستگی تکنیک‌های پرکاربرد معیار دید، روش پراش و شفافیت استفاده شده‌ است. عملکرد هر سه تکنیک در سطوح ترک بجز در نزدیکی نوک ترک یکسان است. کارایی و دقت کاربرد هر تکنیک در روش بدون شبکه حداقل مربعات گسسته با مقایسه نتایج حاصل از مدل‌سازی مثالی بررسی شده است. مقایسه نتایج و میزان خطای هر تکنیک، بیانگر توانایی و دقت بالای روش پیشنهادی در استفاده از تکنیک‌های مختلف تعریف ناپیوستگی در مدل‌سازی صفحات ترکدار می‌باشد. هم‌چنین نشان داده شده است که تکنیک پراش عملکرد نسبتا بهتری در مواجهه با مرزهای ناپیوسته در مقایسه با تکنیک‌های شفافیت و معیار دید دارد.

کلیدواژه‌ها


عنوان مقاله [English]

The performance investigation of discontinuity definition techniques on numerical solution of crack problems by meshless method

نویسندگان [English]

  • Zahra Sheikhi 1
  • Akbar Ghanbari 2
  • Mohammad Karkon 3
  • Soleyman Ghoohestani 4
1 Faculty of Civil Engineering,Islamic Azad University,Larestan Branch, Larestan, Iran
2 Assistant Professor, Faculty of Civil Engineering, Islamic Azad University Larestan Branch, Larestan,Iran
3 Assistant Professor, Faculty of Civil Engineering, Islamic Azad University Larestan Branch, Larestan,Iran
4 Assistant Professor, Faculty of Civil Engineering, Fasa University, Fasa,Iran
چکیده [English]

In recently, several studies have been conducted to use meshless methods according to their advantages to investigate fracture mechanical problems. The utilization of meshless methods in fracture mechanics because of using continuous shape functions requires modification of the shape function near the discontinuity surface. In this paper, the discrete least squares Meshless method (DLSM) is used as truly meshless methods for solving the crack problems, by using discontinuities definition techniques. In the discrete least squares method, the problem domain discretization is performed by unrelated node points, for approximate the functions, used moving least squares shape function with high order of continuity. It also used the strong form of equations for discretizated the equations. The DLSM method is based on minimizing the squares of the residuals at a number of neighboring points of the main node. The boundary conditions are easily enforced by the penalty method. The visibility criterion, diffraction and transparency method are used to define the discontinuity. The performance of all three techniques is the same on the crack surfaces except near the crack tip. The efficiency and accuracy of applying each technique in the DLSM method are investigated by comparing the results of example modeling. Comparison of the results and the error rate of each technique indicate the high capability and accuracy of the proposed method for applying different techniques in cracked plate modeling. It has been shown that the diffraction method performs relatively better in dealing of discontinuous boundaries compared to the transparency and visibility criterion techniques.

کلیدواژه‌ها [English]

  • Meshless Method
  • Discrete Least Squares
  • Discontinuities Definition Techniques
  • Visibility Criterion
  • Diffraction Method
  • Transparency Method
[1] S.K. Chan, I.S.Tuba, and W.K.Wilson, "On the finite element method in linear fracture mechanics", Engineering Fracture Mechanic, Vol. 2, 1970, pp. 1–17.
[2] Y. Gu, X . He, W. Chen and C. Zhang, "Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method", Computers & Mathematics, Vol. 75, No. 1, 2018, pp. 33–44.
[3] T. Belytschkoand T. Black, "Elastic crack growth in finite elements with minimal remeshing", International Journal for Numerical Methods in Engineering, Vol. 45, No. 5, 1999, pp. 601–20.
[4] N. Moës, J. Dolbow and T. Belytschko, "A finite element method for crack growth without remeshingL, International Journal for Numerical Methods in Engineering, Vol. 45, No. 1, 1999, pp. 131–150.
[5] T. Belytschko, Y.Y. Lu and L. Gu, "Element free Galerkin methods", International Journal for Numerical Methods in Engineering, Vol. 37, 1994, pp. 229–256.
[6] S.N. Atluri and T. Zhu, "A new meshless local Petrov–Galerkin (MLPG) approach", Computational Mechanics, Vol. 22, 1998, pp. 117–127.
[7] SN. Atluri, J. Zhang and T. Zhu, "A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach", Computational Mechanics,Vol. 21, 1998, pp. 223–235
[8] T. Belytschko, L. Gu and Y.Y. Lu, "Fracture and crack growth by element-free Galerkin methods", Modelling and Simulation in Materials Science and Engineering, Vol. 2, 1994, pp. 519–534.
[9] D.J. Organ, M.A. Fleming and T. Belytschko,"Continuous Meshless Approximations for Nonconvex Bodies By Diffraction and Transparency", Computational Mechanics, Vol. 18, 1996, pp. 225-235.
[10] S.A. Silling, "Reformulation of elasticity theory for discontinuities and long-range forces", Journal of the Mechanics and Physics of Solids, Vol. 48, 2000, pp. 175-209.
[11] S.A. Silling and E. askari, "A meshfree method based on the peridynamic model of solid mechanic", Computers and Structures, Vol. 83, 2005, pp. 1526-1535.
[12] B. Muravin and E. Turkel, "Spiral Weight for Modeling Cracks in Meshless Numerical Methods", 2003.
[13] Z. Zhang, K.M. Liew, Y. Cheng and Y.Y. Lee, "Analyzing 2D fracture problems with the improved element-free Galerkin method", Engineering Analysis with Boundary Elements, Vol. 32, 2008, pp. 241–250
[14] Y.T. Gu, W. Wang, L.C. Zhang and X.Q. Feng, "An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields", Engineering Fracture Mechanics, Vol. 78, 2011, pp. 175–190.
[15] M. Khezri, M. Abbasi and K.J.R. Rasmussen, "A combined meshfree/finite strip method for analysis of plates with perforations and cracks", Thin-Walled Structures, Vol. 111, 2017, pp. 113–125.
[16] N. Fallah and N. Nikraftar, "Meshless finite volume method for the analysis of fracture problems in orthotropic media", Engineering Fracture Mechanics, Vol. 204, 2018, pp. 46–62.
[17] J. Lei, Y. Xu, Y. Gu and M. Fan, "The generalized finite difference method for in-plane crack problems", Engineering Analysis with Boundary Elements, Vol. 98, 2019, pp. 147–156.
[18] W. Yao, X. Zhou and F. Berto, "Continuous smoothed particle hydrodynamics for cracked nonconvex bodies by diffraction criterion", Theoretical and Applied Fracture Mechanics, Vol. 108, 2020, 102584.
[19] M.H. Afshar and H. Arzani, "Solving Poisson`s equations by the discrete least squares meshless method", WIT Transaction on Modelling and Simulation, Vol. 42, 2004, pp. 23-32.
[20] G. Shobeyri and M.H. Afshar, "Simulating free surface problems using discrete least squares meshless method", Computers & Fluids, Vol. 39, 2010, pp. 461–470.
[21] M.H. Afshar, M. Lashckarbolok and G. Shobeyri, "Collocated discrete least squares meshless (CDLSM) method for the solution of transient and steady-state hyperbolic problems", International Journal for Numerical Methods in Fluids, Vol. 60, 2009, pp. 1055-1078.
[22] M. Naisipour, M.H. Afshar, B. Hassani and A.R. Firoozjaee, "Collocation Discrete Least Square (CDLS) Free Methods Moving Beyond the Finite Element Method", CRC Press, 2003.
[23] A.R. Firoozjaee and M.H. Afshar, "Discrete least squares meshless method with sampling points for the solution of elliptic partial differential equations", Engineering Analysis with Boundary Elements, Vol. 33, 2009, pp. 83–92.
[24] M. Naisipour, M.H. Afshar, B. Hassani and A.R. Firoozjaee, "Collocation Discrete least square (CDLS) method for elasticity problem and grid irregularity effect assessment", American journal of applied sciences, Vol. 5, No. 11, 2008, pp. 1595-1601.
[25] M.H. Afshar, J. Amani and M. Naisipour, "A node enrichment adaptive refinement in Discrete Least Squares Meshless method for solution of elasticity problems", Engineering Analysis with Boundary Elements, Vol. 36, 2012, pp. 385–393
[26] M.H. Afshar, M. Naisipour and J. Amani, "Node moving adaptive refinement strategy for planar elasticity problems using discrete least squares meshless method", Finite Elements in Analysis and Design, Vol. 47, 2011, pp. 1315–1325.
[27] A. Griffith, "The phenomena of rupture and flows in solids", Philosophical Transactions of the Royal Society of London Series A, No. 221, 1921, pp. 163–197.
[28] G. R.Irwin, "Analysis of stresses and strains near the end of a crack traversing a plate", Journal of Applied Mechanics - Trans. ASME 24, 1956, pp. 361–364.
[29] J.R. Rice, "A path independent integral and the approximate analysis of strain concentrations by notches and cracks", Journal of Applied Mechanics - Trans. ASME 35, 1968, pp. 379–386.
[30] Y. Li, J. Li and P.H. Wen, "Finite and infinite block Petrov–Galerkin method for cracks in functionally graded materials", Applied Mathematical Modelling, Vol. 68, 2019, pp. 306–326.
[31] R. Zhang and R. Guo, "Determination of crack tip stress intensity factors by singular Voronoi cell finite element model", Engineering Fracture Mechanics, Vol. 197, 2018, pp. 206–216.
[32] B.H. Nguyen, H.D. Tran, C. Anitescu, X. Zhuang and T. Rabczuk, "An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems", Computer Methods in Applied Mechanics and Engineering, Vol. 306, 2016, pp. 252–275.
[33] W. Zhou, B. Liu, Q. Wang, X. Chang and Xu. Chen, "Formulations of displacement discontinuity method for crack problems based on boundary element method", Engineering Analysis with Boundary Elements, Vol. 115, 2020, pp. 86–95.
[34] فرهاد جاویدراد، مکانیک شکست در طرّاحی سازه‌ها، انتشارات گوتنبرگ، ایران، 1388.
[35] H. Tada, P.C. Paris and G.R. Irwin, The Stress Analysis of Crack Handbook, 3th ed., ASME Press, 2000.
[36] G.R. Liu, Mesh Free Methods, CRC Press, Boca Raton, Fla, USA, 1st ed., 2003.
[37] L. Wang, J.S. Chen and H.Y. Hu, "Subdomain radial basis collocation method for fracture mechanics", International journal for numerical methods in engineering, Vol. 83, 2010, pp. 851–876.
[38] V.P. Nguyen, T. Rabczuk, S. Bordas and M. Duflot, "Meshless methods: a review and computer implementation aspects", Mathematics and Computers in Simulation, Vol. 79, 2008, pp. 763–813.
[39] عبدالحسین فریدون و فرهان یکتای کیا، «تحلیل ترک در مواد مرکّب به‌وسیلة روش انرژی»، مجلة مدل‌سازی در مهندسی، دورة 3، شمارة 17، تابستان 1388، صفحة 55- 65.
[40] بهروز حسنی و احمد گنجعلی، «مکان‌یابی نقاط بهینه تنش در تحلیل ایزوژئومتریک»، مجلة مدل‌سازی در مهندسی، دورة 13، شمارة 40، تابستان 1394، صفحة 151- 167.
[41] محمّد دامغانی نوری و حسین رحمانی، «بررسی تأثیرات زمان فراز بار ضربه‌ای بر ضریب شدّت تنش دینامیکی در ترک دوبعدی نیمه بی‌نهایت بر روی جسم نامحدود»، مجلة مدل‌سازی در مهندسی، دورة 13، شمارة 40، بهار 1394، صفحة 79- 87.
[42] میثم شکوری، سید روح‌الله کاظمی، «بررسی رشد دو ترک پادمتقارن در ورق بر اثر کشش لبه‌ها با سرعت‌های مختلف با استفاده از تئوری پری‌داینامیک»، مجلة مهندسی مکانیک امیرکبیر، دورة 51، شمارة 1، 1398، صفحة 43-52.