سنسور ضریب شکست بسیار حساس جدید با استفاده از کوپلینگ عمودی قوی در نانوساختار پلاسمونیکی دیسک بیضی شکل روی حلقه بیضی شکل

نوع مقاله : مقاله برق

نویسنده

عضو هیئت علمی دانشگاه محقق اردبیلی

چکیده

در این کار تحقیقی، حسگر ضریب شکست بسیار حساس جدیدی با استفاده از نانوذرات طلا و نقره پیشنهاد شده است. ایده اصلی این کار تفکیک نانو ذره دیسک-بیضی شکل به دو ذره در یک حجم ثابت است. تفکیکی که در آن یک دیسک-بیضی شکل کوچک با یک فاصله کم روی حلقه‌-بیضی شکل قرار می‌گیرد و با افزایش کوپلینگ عمودی در لبه های ساختار، حساسیت سیستم را بهبود می دهد. ساختار پیشنهادی خواص حسگری نوری بهتری نسبت به ساختارهای قبلی دارد. در این ساختار نقطه اوج تشدید پلاسمونیکی اتفاق می‌‌افتد. این ساختار حساسیت nm 440 بر واحد ضریب شکست و پهنای کامل در نصف بیشینه nm 55.3 را دارد. برای مقایسه ذکر این نکته مهم است که این مقادیر برای نانو ذره دیسک-بیضی شکل nm 320 بر واحد ضریب شکست و nm 66.5 می‌باشد. با تفکیک نانوذرات دیسک-بیضی شکل و شکل دهی دیسکی-بیضی شکل روی حلقه-بیضی شکل، حساسیت به مقادیری بیشتر از nm 440 بر واحد ضریب شکست افزایش می‌یابد. چیدمان مناسب نانو ذرات تفکیک شده موجب می‌شود میدان عمودی در لبه‌های کوپلینگ به طور قابل توجهی افزایش یابد.

کلیدواژه‌ها


عنوان مقاله [English]

A new highly sensitive refractive index sensor using vertically coupled plasmonic elliptic-disk up elliptic-ring nanostructure

نویسنده [English]

  • Hamid Bahador
Faculty of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

In this research work, a novel highly sensitive refractive index sensor using elliptical gold and silver nanoparticles are proposed. The main idea of this work is the use of an elliptic-shaped nanoparticle that is decomposed into two particles as a form of elliptic-disk up elliptic-ring to improve the sensitivity. The better optical sensing properties of the proposed nanostructure are the main pion before looking at their details. The optimum arrangement is found to have strong vertical coupling, and hence a high sensitivity. A plasmonic resonance peak is take placed for elliptic nanoparticles. The sensitivity of 440 nm/RIU and full width at half maximum (FWHM) of 55.3 are obtained for that. It is important to mention that these values are 320 nm/RIU and 66.5 for elliptic shape nanoparticles, respectively. By decomposing the elliptic nanoparticles as a form of elliptic-disk up elliptic-ring, the sensitivity is increased to higher than 440nm/RIU. The arrangement of decomposed nanoparticles causes the field to be remarkably enhanced at their point of coupling.

کلیدواژه‌ها [English]

  • Plasmonic
  • Nanostructure
  • elliptic-disk up elliptic-ring
  • sensitivity
  • refractive index sensor
 
[1] سعید علیائی و احمد محب‌زاده، «نویزها طراحی و مدل‌سازی حسگر زیستی مبتنی بر نانو تشدیدگر کریستال فوتونی»، مجلة مدل‌سازی در مهندسی، دورة 15، شمارة 51، زمستان 1396، صفحة 351- 358.
[2] سعید رحیمی، سهیل رضازاده مفردنیا، بهنام راسخ و سید عباس شجاع‌الساداتی، «شبیه‌سازی و بررسی عملکرد پارامترهای مختلف حسگر مبتنی بر غشای سیلیکونی جهت تشخیص متان محلول در فرایند تخمیر»، مجلة مدل‌سازی در مهندسی، دورة 17، شمارة 58، زمستان 1398، صفحة 329- 336.
[3] بهرام عزیزالله گنجی و صدیقه بابایی صداقت، «بهینه‌سازی ساختار میکروفن خازنی جدید با دیافراگم قورباغه‌ای جهت افزایش حساسیت و کاهش ولتاژ تغذیه»، مجلة مدل‌سازی در مهندسی، دورة 17، شمارة 59، زمستان 1398، صفحه 141- 151.
[4] G. Qiu, Y. Yue, J. Tang, Y.-B. Zhao and J. Wang, "Total Bioaerosols Detection by a Succinimidyl-Ester-Functionalized Plasmonic Biosensor to Reveal Different Characteristics at Three Locations in Switzerland", Environmental Science & Technology, Vol. 8, No. 4, 2020, 117-131.
[5] H. Heidarzadeh, "Analysis and simulation of a plasmonic biosensor for hemoglobin concentration detection using noble metal nano-particles resonances", Optics Communications, Vol. 459, 2020 p. 124940.
[6] J. Liu, M. Jalali, S. Mahshid and S. Wachsmann-Hogiu, "Are plasmonic optical biosensors ready for use in point-of-need applications?", Analyst, 2020.
[7] H. Heidarzadeh, "Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell", Materials Research Express, Vol. 5, No. 3, 2018, p. 036208.
[8] A. Jangjoy, H. Bahador and H. Heidarzadeh, "Design of an ultra-thin silicon solar cell using Localized Surface Plasmonic effects of embedded paired nanoparticles", Optics Communications, Vol. 450, 2019, pp. 216-221.
[9] G. Mokari and H. Heidarzadeh, "Efficiency enhancement of an ultra-thin silicon solar cell using Plasmonic coupled Core-Shell nanoparticles", Plasmonics, Vol. 14, No. 5, 2019, pp. 1041-1049.
[10] H. Heidarzadeh and F. Mehrfar, "Effect of size non-uniformity on performance of a plasmonic perovskite solar cell: an array of embedded plasmonic nanoparticles with the Gaussian distribution radiuses", Plasmonics, Vol. 13, No. 6, 2018, pp. 2305-2312.
[11] A. Agrawal, S. H. Cho, O. Zandi, S. Ghosh, R.W. Johns and D.J. Milliron, "Localized surface plasmon resonance in semiconductor nanocrystals", Chemical reviews, Vol. 118, No. 6, 2018, pp. 3121-3207.
[12] S. Link and M.A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods", ed: ACS Publications, 1999.
[13] T. Sannomiya, C. Hafner and J. Vörös, "Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing", Journal of biomedical optics, Vol. 14, No. 6, 2009, p. 064027.
[14] M.M. Miller and A.A. Lazarides, "Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering", Journal of Optics A: Pure and Applied Optics, Vol. 8, No. 4, 2006, p. S239.
[15] H. Bahador and H. Heidarzadeh, "Analysis and Simulation of a Novel Localized Surface Plasmonic Highly Sensitive Refractive Index Sensor", Plasmonicss, 2020, pp. 1-7.
[16] S. Zou, "Light-driven circular plasmon current in a silver nanoring", Optics letters, Vol. 33, No. 18, 2008, pp. 2113-2115.
[17] S. Barbosa et al., "Tuning size and sensing properties in colloidal gold nanostars", Langmuir, Vol. 26, No. 18, 2010, pp. 14943-14950.
[18] S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung and S.-M. Yang, "Patterned arrays of Au rings for localized surface plasmon resonance", Langmuir, Vol. 22, No. 17, 2006, pp. 7109-7112.
[19] B. Nikoobakht and M.A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method", Chemistry of Materials, Vol. 15, No. 10, 2003, pp. 1957-1962.
[20] Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles", science, Vol. 298, No. 5601, 2002, pp. 2176-2179.
[21] H. Iu, J. Li, H. Ong and J.T. Wan, "Surface plasmon resonance in two-dimensional nanobottle arrays", Optics express, Vol. 16, No. 14, 2008, pp. 10294-10302.
[22] K.-H. Su, Q.-H. Wei, X. Zhang, J. Mock, D.R. Smith and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles", Nano letters, Vol. 3, No. 8, 2003, pp. 1087-1090.
[23] X. Huang, I.H. El-Sayed, W. Qian and M.A. El-Sayed, "Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker", Nano letters, Vol. 7, No. 6, 2007, pp. 1591-1597.
[24] N.J. Halas, S. Lal, W.-S. Chang, S. Link and P. Nordlander, "Plasmons in strongly coupled metallic nanostructures", Chemical reviews, Vol. 111, No. 6, 2011, pp. 3913-3961.
[25] P.K. Jain and M.A. El-Sayed, "Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers", The Journal of Physical Chemistry C, Vol. 112, No. 13, 2008, pp. 4954-4960.
[26] P.K. Jain and M.A. El-Sayed, "Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells", Nano letters, Vol. 7, No. 9, 2007, pp. 2854-2858.
[27] S. Zhang et al., "Enhancing Plasmonic–Photonic Hybrid Cavity Modes by Coupling of Individual Plasmonic Nanoparticles", The Journal of Physical Chemistry C, Vol. 123, No. 39, 2019, pp. 24255-24262.
[28] I. Abdulhalim, "Biosensing configurations using guided wave resonant structures", In Optical Waveguide Sensing and Imaging, Springer, Dordrecht, 2008. pp. 211-228.
[29] A. Shehadeh, A. Evangelou, D. Kechagia, P. Tataridis, A. Chatzilazarou and F. Shehadeh, "Effect of ethanol, glycerol, glucose/fructose and tartaric acid on the refractive index of model aqueous solutions and wine samples", Food Chemistry, 2020, p. 127085.
[30] M. Pelton, A. Javier and B. Garnett, "Metal‐nanoparticle plasmonics", Laser & Photonics Reviews 2, No. 3, 2008, pp. 136-159.
[31] A.J. Haes and R.P. Van Duyne, "Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy", In Plasmonics: Metallic Nanostructures and Their Optical Properties", International Society for Optics and Photonics, Vol. 5221, 2003, pp. 47-58.