مدلسازی اثر میدان مغناطیسی ثابت بر تولید پتانسیل عمل در نورون

نوع مقاله : مقاله برق

نویسندگان

1 استادیار، گروه مهندسی پزشکی، دانشگاه صنعی همدان

2 گروه برق، دانشکده فنی مهندسی، واحد ساوه، دانشگاه آزاد اسلامی ، ساوه، ایران

چکیده

علی رغم نگرانی عمومی در مورد تاثیر میدان های مغناطیسی بر سلامت انسان، استفاده از ادوات مغناطیسی در پزشکی بالینی رو به افزایش است. با این حال اثر یک میدان مغناطیسی ثابت بر تولید پتانسیل عمل در نورون هنوز بطور صریح توضیح داده نشده است. در کار تحقیقاتی پیش رو مدلی فیزیکی برای تشریح اثر یک میدان مغناطیسی ثابت بر تحریک پذیری نورون ارائه می‌شود. صحت مدل پیشنهادی بر اساس شبیه‌سازی به کمک یک نرم افزار همگانی موسوم به اچ. اچ. سیم، که معادلات مدل هوجکین و هاکسلی را در نرم افزار متلب پیاده‌سازی می‌کند، راست‌آزمایی می-شود. مدل ارائه شده برای تشریح اثر میدان مغناطیسی ثابت بر تحریک‌پذیری نورون با داده‌های تجربی و همچنین نتایج شبیه‌سازی بر اساس مدل هوجکین هاکسلی مطابقت دارد. شبیه‌سازی با نرم افزار اچ. اچ. سیم کاهش دامنه جریان محرک متناسب با اندازه چگالی شار مغناطیسی ثابت اعمال شده و وقفه حاصل در تولید پتانسیل عمل را تایید نمود. تفکیک جزئی بار الکتریکی ناشی از نیروی مغناطیسی وارد بر یون های متحرک در درون نورون بعنوان عامل پیدایش میدان الکتریکی القایی هال در جهتی عمود بر جهت هدایت پتانسیل عمل در امتداد آکسون معرفی گردید. شارش جریان متناظر با این میدان الکتریکی سبب کاهش جریان یونی که برای دشارژ ظرفیت خازنی غشاء در دسترس است می‌گردد که به نوبه خود منجر به کاهش تحریک‌پذیری نورون می‌شود

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the Influence of a Steady Magnetic Field on Action Potential Generation in Neurons

نویسندگان [English]

  • Shahriar Jamasb 1
  • Ali Elyasi 2
1 Assistant Professor, Biomedical Engineering Department, Hamedan University of Technology, Hamedan, 65169-13733, Iran
2 Department of Electrical Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran
چکیده [English]

In spite of increasing public concern about the impact of magnetic fields on health, use of magnetic devices in the practice of clinical medicine is on the rise. However, the influence of a constant magnetic field on action potential generation and conduction in neurons is yet to be definitively explained. In this work a physical model is presented which accounts for the influence of a steady magnetic field on neuron excitability. The validity of the proposed model is verified based on simulations using a public-domain software known as HHSim, which implements the Hodgkin-Huxley model equations in MATLABTM. The proposed model accounting for the influence of a steady magnetic field on neuron excitability is in agreement with experimental observations as well as simulations based on the Hodgkin-Huxley model. Simulations using the HHSim software verified the reduction in the amplitude of the depolarizing excitation current in proportion to the magnitude of the magnetic flux density leading to action potential suppression. The separation of ionic charge resulting from the magnetic force acting on the mobile ions in the intracellular space was introduced as the origin of a Hall electric field in a direction perpendicular to action potential transmission along the axon. The current flow associated with this electric field, in turn, leads to the reduction of the ionic current available for discharging the membrane capacitance, thereby reducing the neuron excitability

کلیدواژه‌ها [English]

  • Magnetic Field. neuron
  • action potential
  • Hall Effect
 
 
[1] مازیار دهقان، مصطفی میرزایی و آرش محمدزاده، «شبیه‌سازی عددی و ارائة روش حل برای جریان سیال غیرنیوتنی تحت تأثیر میدان مغناطیسی در لایة مرزی یک صفحة کشسان»، مجلة مدل‌سازی در مهندسی، دورة 11، شمارة 34، پاییز 1392، صفحة 77-85.
[2] سید سجاد جعفری و نوید فریدونی مهر، «بررسی تولید انتروپی در یک جریان لغزشی هیدرودینامیک مغناطیسی نانوسیال بر روی یک صفحة نفوذپذیر گسترش‌یافته»، مجلة مدل‌سازی در مهندسی، دورة 15، شمارة 49، تابستان 1396، صفحة 39-53.
[3] محمدیوسف ولی و نیما امجدی، «طراحی و ساخت موتور مغناطیسی خورشیدی برای خودروها»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 52، بهار 1397، صفحة 149-161.
[4] S. Yamaguchi-Sekino, T. Nakai, S. Imai, S. Izawa and T. Okuno, "Occupational exposure levels of static magnetic field during routine MRI examination in 3 T MR system", Bioelectromagnetics, Vol. 35, No. 1, January 2014, pp. 70–75.
[5] C. Westbrook, Handbook of MRI Technique, 4th Edition. Wiley-Blackwell, UK, 2014.
[6] R. Leoci, G. Aiudi, F. Silvestre, E. Lissner and G.M. Lacalandra, "Effect of pulsed electromagnetic field therapy on prostate volume and vascularity in the treatment of benign prostatic hyperplasia: a pilot study in a canine model", Prostate, Vol. 74, No. 11, 2014, pp. 1132-1141.
[7] I. Nojima, S. Koganemaru, H. Fukuyama and T. Mima, "Static magnetic field can transiently alter the human intracortical inhibitory system", Clinical Neurophysiology, Vol. 126, No. 12, Dec. 2015, pp. 2314– 2319.
[8] H. Kirimoto, A. Asao, H. Tamaki and H. Onishi, "Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices", Scientific Reports, Vol. 6, 2016, p. 34509.
[9] H. Kirimoto, H. Tamaki and H Onishik, "Transcranial static magnetic field stimulation - new non-invasive brain stimulation tool", The Journal of Physical Fitness and Sports Medicine, Vol. 5, No. 3, 2016, pp. 205-211.
[10] I. Nojima, A. Oliviero and M. Tatsuya, "Transcranial static magnetic stimulation -From bench to bedside and beyond-", Neuroscience Research, Vol. 156, July 2020, pp. 250-255.
[11] P. Arias, L. Adán-Arcay, B. Puerta-Catoira, A. Madrid and J. Cudeiro, "Transcranial static magnetic field stimulation of M1 reduces corticospinal excitability without distorting sensorimotor integration in humans", Brain Stimulation, vol. 10, no. 2, Mar. 2017, pp. 340–342.
[12] P. Davila-Pérez, A. Pascual-Leone and J. Cudeiro, "Effects of Transcranial Static Magnetic Stimulation on Motor Cortex Evaluated by Different TMS Waveforms and Current Directions", Neuroscience, Vol. 413, August 2019, pp. 22-30.
[13] K. Nakagawa and K. Nakazawa, "Static magnetic field stimulation applied over the cervical spinal cord can decrease corticospinal excitability in finger muscle", Clinical Neurophysiology Practice, Vol. 3, 2018, pp. 49–53.
[14] C. Zhang, F. Tang, P. Ma and Z. Gan, "A simplified HTc rf SQUID to analyze the human cardiac magnetic field", American Institute of Physics, AIP Advances, Vol. 4, 2014, pp. 127-131.
[15] J. Wikswo and J. Barach, "An estimate of the steady magnetic field strength required to influence nerve conduction", IEEE Transactions on Biomedical Engineering, Vol. 27, No. 12, December 1980, pp. 722-723.
[16] S. Çizmecioğulları, Y. Keskin, H. Saybasili and S. Paker, "Effects of Static Magnetic Field on Compound Action Potential of Isolated Frog Sciatic Nerve", Journal of Magnetics, Vol. 24, No.4, 2019, pp.668-673.
[17] S. Hashemi and A. Abdolali, "Three-Dimensional Analysis, Modeling, and Simulation of the Effect of Static Magnetic Fields on Neurons", Bioelectromagnetics, Vol. 38, No. 2, February 2017, pp. 128-136.
[18] A. Cavopol, A. Wamil, R. Holcomb and M. McLean, "Measurement and Analysis of Static magnetic fields that block action potentials in cultured neurons", Bioelectromagnetics, Vol. 16, No. 3, March 1995, pp. 197-206.
[19] S. Novikov, G. Maksimov, V. Volkov and A. Shalygin, "Influence of weakened constant magnetic fields on nerve cell excitability", Biophysics, Vol. 53, No. 3, March 2008, pp. 243-244.
[20] Ö. Coşkun, M. aziroğlu, S. Çömlekçi and S. Özkorucuklu, "Effects of 50 Hertz-1 mT magnetic field on action potential in isolated rat sciatic nerve", Toxicology & Industrial Health, Vol. 2, No. 2, February 2011, pp. 127-132.
[21] D. Touretzky, M. Albert, N. Daw, A. Ladsariya and M. Bonakdarpour,"HHsim: Graphical Hodgkin-Huxley Simulator", 2013, Available from: http://www.cs.cmu.edu/~dst/HHsim.