تحلیل رفتار پدیداری پایایی در سیستم ازسیستم های شامل هاب های انرژی

نوع مقاله : مقاله برق

نویسندگان

1 دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 گروه قدرت، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

سیستم ازسیستم ها مجموعه ای از سیستم های مستقل است که به منظور نیل به مجموعه ای از مأموریت های اختصاص یافته به سیستم بزرگتر، یکپارچه شده اند. یکی از ویژگی های اساسی هر سیستم ازسیستم ها، رفتار به اصطلاح پدیداری می باشد که به معنای توانایی سیستم ازسیستم ها در ارائه رفتارهای نوپدید حاصل از تعامل بین سیستم های سازنده ی مستقلی می باشد که توسط هیچ یک از آن ها در انزوا قابل انجام نمی باشد. موفقیت در بهره برداری سیستم ازسیستم ها مستلزم شناخت، مدیریت و بهره برداری مؤثر از این رفتار پدیداری می باشد. هدف از ارائه این پژوهش ارائه مدلی بدیع به منظور تحلیل رفتار پدیداری پایایی در سیستم ازسیستم های شامل هاب های انرژی می باشد. براین مبنا، اثر تعامل سیستم های مستقل هاب انرژی در جهت بهبود شاخص های پایایی و اقتصادی در مدیریت برنامه ریزی بهره برداری از سیستم ریزشبکه مورد بررسی قرار می گیرد. براین اساس، مدل پیشنهادی بر شبکه توزیع استاندارد 33 باسه اصلاح شده اعمال و نتایج مورد ارزیابی قرار می گیرد. نتایج شبیه سازی، بیانگر اثر قابل توجه این تعامل در بازنمایی رفتار پدیداری این سیستم ازسیستم ها به منظور بهبود شاخص های پایایی، کاهش هزینه ها، کاهش میزان انرژی تجدیدپذیرقطع شده همزمان با نیاز کمتر به ایجاد منابع متعدد تولیدی است.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Emergent Behavior of Reliability in the System of Systems Including Energy Hubs

نویسندگان [English]

  • Mahdi Nozarian 1
  • Alireza Fereidunian 2
1 Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
2 Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
چکیده [English]

Abstract:
System of systems is a collection of independent systems that pool their resources and capabilities together to create a new, more functional system. One of the basic features of any system of systems is emergent behavior that arises out of the interactions between components of a system and cannot easily be predicted or extrapolated from the behavior of those individual components. The purpose of this study is to provide an analysis of reliability-emergent behavior in the system of systems involving energy hubs. Based on this, the effect of the electrical interaction of energy hubs is examined, in order to improve reliability and economic indices in the management of the microgrid system. In order to evaluate the proposed model, the method has been implemented on IEEE 33-bus 12.66 kV test system. Numerical experiments confirm the performance and effectiveness of the proposed method.
Keywords: Systems of systems, Emergent behavior, Microgrid operation scheduling, Smart energy hubs, Reliability

کلیدواژه‌ها [English]

  • Systems of systems
  • Emergent behavior
  • Microgrid operation scheduling
  • Energy hubs
  • Reliability
 
[1] A. Fereidunian, H. Lesani, M. A. Zamani, M. A. S. Kolarijani, N. Hassanpour, and S. S. Mansouri, "A complex adaptive system of systems approach to human–automation interaction in smart grid", Contemporary issues in systems science and engineering, John Wiley and Sons,  April 2015, pp. 425-500.
[2] A. K. Marvasti, Y. Fu, S. DorMohammadi, and M. Rais-Rohani, "Optimal operation of active distribution grids: A system of systems framework", IEEE Transactions on Smart Grid,Vol. 5, No. 3, March 2014, pp.1228-1237.
[3] A. Mohammadi, F. Safdarian, M. Mehrtash, and A. Kargarian, "A system of systems engineering framework for modern power system operation", Sustainable Interdependent Networks II , Springer, Cham, 2019, pp. 217-247.
[4] E. Kremers, P. Viejo, O. Barambones, and J. G. de Durana, "A complex systems modelling approach for decentralised simulation of electrical microgrids", 15th IEEE International Conference on Engineering of Complex Computer Systems, Oxford, United Kingdom, March 2010, pp. 302-311.
[5] J. G. de Durana, O. Barambones, E. Kremers, and P. Viejo, "Modeling Smart Grids as Complex Systems through the Implementation of Intelligent Hubs", ICINCO (3),  Funchal, Madeira, Portugal, June 2010, pp. 146-151.
[6] M. S. Mahmoud, M. S. U. Rahman, and F. M. Al-Sunni, "Networked control of microgrid system of systems", International Journal of Systems Science, Vol. 47, No. 11, 2015,  pp.2607-2619.
[7] H. Mehrjerdi, "Resilience Improvement With Zero Load Curtailment by Multi-Microgrid Based on System of Systems", IEEE Access, Vol. 8, November 2020, pp.198494-198502.
[8] R. Jafari-Marandi, M. Hu, and S. Chowdhury, "A system of system approach for smart complex energy system operation decision", International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers Digital Collection, August 2015.
[9] M. S. Mahmoud, M. S. U. Rahman, and M. S. Fouad, "Review of microgrid architectures–a system of systems perspective", IEET Renewable Power Generation, Vol. 9, No. 8, November 2015, pp.1064-1078.
[10] S. Mittal, M. Ruth, A. Pratt, M. Lunacek, D. Krishnamurthy, and W. Jones, "System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation", (No. NREL/CP-2C00-64045), National Renewable Energy Lab.(NREL), Golden, CO (United States), August  2015.
[11] M. Uslar, S. Rohjans, C. Neureiter, F. Pröstl Andrén, J. Velasquez, C. Steinbrink, V. Efthymiou, G. Migliavacca, S. Horsmanheimo, H. Brunner, and T. I. Strasser, "Applying the smart grid architecture model for designing and validating system-of-systems in the power and energy domain: A European perspective", Energies, Vol. 12, No. 2, January 2019, pp.258.
[12] J. Evora, J. J. Hernandez, M. Hernandez, and E. Kremers, "Decision support for complex systems: a smart grid case", Proceedings of the 2013 Workshop on Complex Systems Modelling and Simulation, Milan, Italy, July 2013, pp. 21-37.
[13] G. Guérard, S. B. Amor, and A. Bui, "A Complex System Approach for Smart Grid Analysis and Modeling", In KES, San Sebastian, Spain, September 2012 , pp. 788-797.
[14] S. M. Amin, and A. M.Giacomoni, "Smart grid as a dynamical system of complex networks: A framework for enhanced security", IFAC Proceedings Volumes, Vol. 44, No. 1, January 2011, pp.526-531.
[15] R. M. Rylatt, J. R.Snape, P. Allen, B. M. Ardestani, P. J. Boait, E. Boggasch, D. Fan, G. Fletcher, R. Gammon, M. Lemon, and V. H. Pakka, "Exploring smart grid possibilities: A complex systems modelling approach", 2015.
[16] N. U.Ibne Hossain, M.Nagahi, R.Jaradat, C.Shah, R.Buchanan, and M.Hamilton, "Modeling and assessing cyber resilience of smart grid using Bayesian network-based approach: a system of systems problem", Journal of Computational Design and Engineering, Vol. 7, No. 3, June  2020, pp.352-366.
[17] M. Antal, C. Pop, T. Cioara, I. Anghel, I. Salomie, and F. Pop, "A system of systems approach for data centers optimization and integration into smart energy grids", Future Generation Computer Systems, Vol. 105, April 2020, pp.948-963.
[18] مسعود احمدی گرجی و نیما امجدی، "برنامه­ریزی توسعه پویای شبـکه­های توزیع در حضور منابع تولید پراکنده با استفاده از یک الگوریتم بهینه­سازی جدید دو سطحی"، نشریه مدل­سازی در مهندسی، دوره 14، شماره 44، بهار 1395، صفحه 143-157.
[19] سید محمد باقر ساداتی، جمال مشتاق و میعادرضا شفیعی­خواه، "تأثیر خودروهای الکتریکی و برنامه پاسخگویی بار بر بهـره‌برداری بهینه از شبکه‌ توزیع در چهارچوب یک مدل دوسطحی جدید"، نشریه مدل­سازی در مهندسی، دوره 16، شماره 54، پاییز 1397، صفحه 53-68 .
[20] M. Nozarian, and A. Fereidunian, "Smart City as an Smart Energy Hub: A Bibliographic, Analytic and Structural Review", Iranian Electric Industry Journal of Quality and Productivity, Vol. 9, No. 4, November 2020,pp.63-83.
[21] مهدی نوذریان و علیرضا فریدونیان، "ارزیابی اقتصادی و زیست­محیطی هاب انرژی با سیستم توزیع ترکیبی و انرژی خورشـیدی"، پنجمین کنفرانس بین­المللی فن­آوری و مدیریت انرژی، تهران، ایران،30 بهمن و 1 اسفند، 1397.
[22] مهدی نوذریان و علیرضا فریدونیان، "بهره­برداری بهینه ریزشبکه­های شامل ها­ب­های انرژی به­هم­پیوسته  با حضور پاسخگویی بار و منابع تولیدپراکنده"، کنفرانس شبـکه­های هوشمند انرژی 98، تهران، ایران، 27 تا 28 آذرماه، 1398.
[23] مهدی نوذریان و علیرضا فریدونیان، "شهر هوشمند به­مثابه هاب انرژی: مروری بر انعطاف­پذیری شهر در بحران کرونــا"، کنفرانس شبـکه­های هوشمند انرژی 99، کاشان، ایران، 26 تا 27 آذرماه، 1399.
[24] R. Bahmani, H. Karimi, and S. Jadid, "Cooperative energy management of multi-energy hub systems considering demand response programs and ice storage", International Journal of Electrical Power and Energy Systems, Vol. 130, September 2021, p.106904.
[25] M. R. Ramatian, A. G. Shamim, and S. Bahramara, "Optimal Operation of the Energy Hubs in the islanded Multi-Carrier Energy System Using Cournot model", Applied Thermal Engineering, March 2021, p.116837.
[26] A. Ghanbari, H. Karimi, and S. Jadid, "Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks", Energy, Vol. 204, May 2020, p.117936.
[27] X. Wang, Y. Liu, C. Liu, and J. Liu, " Coordinating energy management for multiple energy hubs: From a transaction perspective", International Journal of Electrical Power and Energy Systems, Vol. 121, October 2020, p.106060.
[28] A. Mirzapour-Kamanaj, M. Majidi, K. Zare, and R. Kazemzadeh, "Optimal strategic coordination of distribution networks and interconnected energy hubs: A linear multi-follower bi-level optimization model", International Journal of Electrical Power and Energy Systems, Vol. 119, July 2020, p.105925.
[29] T. Liu, D. Zhang, and T. Wu, "Standardised modelling and optimisation of a system of interconnected energy hubs considering multiple energies—Electricity, gas, heating, and cooling", Energy Conversion and Management, Vol. 205, February 2020, p.112410.
[30] M. Khorasany, A. Najafi-Ghalelou, R. Razzaghi, and B. Mohammadi-Ivatloo, "Transactive energy framework for optimal energy management of multi-carrier energy hubs under local electrical, thermal, and cooling market constraints", International Journal of Electrical Power and Energy Systems, Vol. 129, July 2021, p.106803.
[31] M. Mohammadi, Y. Noorollahi, B. Mohammadi-ivatloo, M. Hosseinzadeh, H. Yousefi, and S. T. Khorasani, "Optimal management of energy hubs and smart energy hubs–a review",  Renewable and Sustainable Energy Reviews, Vol. 89, Juny 2018, pp.33-50.
[32] T. Liu, D. Zhang, and T. Wu," Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach", Energy conversion and management, Vol. 95, February 2020, pp.36-46.
[33] A. Bostan , M. S. Nazar, M. Shafie-khah, and J. P. Catalão," Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs", Energy, Vol. 190, January  2020, p.116349.
[34] X. Luo, Y. Liu, J. Liu, and X. Liu, "Energy scheduling for a three-level integrated energy system based on energy hub models:A hierarchical Stackelberg game approach", Sustainable Cities and Society, Vol. 52, January 2020, p.101814.
[35] X. Zhang, L. Che, M.Shahidehpour, A. S. Alabdulwahab, and A. Abusorrah, "Reliability-based optimal planning of electricity and natural gas interconnections for multiple energy hubs", IEEE Transactions on Smart Grid, Vol. 8, No. 4, December 2015, pp.1658-1667.
 
[36] J. F. Marquant, R. Evins, and J. Carmeliet," Reducing computation time with a rolling horizon approach applied to a MILP formulation of multiple urban energy hub system", Procedia Computer Science, Vol. 51, January 2015, pp.2137-2146.
[37] M. Ghorab, "Energy hubs optimization for smart energy network system to minimize economic and environmental impact at Canadian community", Applied Thermal Engineering, Vol. 151, March 2019, pp.214-230.
[38] H. R. Gholinejad, A. Loni, J. Adabi, and M. Marzband, "A hierarchical energy management system for multiple home energy hubs in neighborhood grids", Journal of Building Engineering, Vol. 28, March  2020, p.101028.
[39] D. Huo, S. Le Blond, C. Gu, W. Wei, and D. Yu," Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach," International Journal of Electrical Power and Energy Systems, Vol. 95, February 2018, pp.36-46.
[40] T. J. Inocêncio, G. R. Gonzales, E. Cavalcante, and F. E. Horita, "Emergent Behavior in System-of-Systems: A Systematic Mapping Study", Proceedings of the XXXIII Brazilian Symposium on Software Engineering, September 2019, pp. 140-149.
[41] J. C. Hsu, and M. Butterfield, "Modeling Emergent Behavior for Systems‐of‐Systems", INCOSE International Symposium, June 2007, pp. 1811-1821.
[42] V. V. G. Neto, "Validating Emergent Behaviours in Systems-of-Systems through Model Transformations", SRC@ MoDELS, October 2016.
[43] S. Mittal, and L. Rainey, "Harnessing emergence: The control and design of emergent behavior in system of systems engineering", Proceedings of the conference on summer computer simulation, July 2015, pp. 1-10.
[44] A. Shahsavari, A. Fereidunian, and S. M. Mazhari, "A joint automatic and manual switch placement within distribution systems considering operational probabilities of control sequences," International Transactions on Electrical Energy Systems, Vol. 25, No. 11, November 2015, pp.2745-2768.
[45] علی کریمی، زهرا رنجبر، علیرضا فریدونیان و حمید لسانی، "بهره برداری بهینه از ریزشبکه­ها در حضور ذخیره­کننده­های انرژی و منابع انرژی تجدیدپذیر"، کنفرانس شبکه­های هوشمند انرژی 95، کرمان، ایران، 30دی تا 1 آذر، 1395.
[46] عباس توکلی، احدکاظمی و مصطفی اسماعیلی شاهرخت، "پخش بار احتمالی شبکه­های توزیع در حضور منابع انرژی تجدیدپذیر"، کنفرانس شبکه­های هوشمند انرژی 93، تهران، ایران، 18 آذرماه، 1393.
[47] حمید فلقی، مریم رمضانی، محمودرضا حقی فام، "تحــلیل تأثیر نـیروگاه‌های بادی بر قابلیت تبادل شبکه‌های انتــقال در سیستم قدرت"، نشریه مدل­سازی در مهندسی، دوره 10، شماره 30، پاییز 1391، صفحه 61-75.
[48] محمد حسین شمس، مجید شهابی، " زمانبندی بهره برداری بهینه از ریزشــبکه در حضور هاب­های انــرژی متصل­به­هم با در نظر گرفتن قیود امنیت سیستم انرژی و مشارکت بارهای پاسخگو"، مجله مــهندسی برق دانـشگاه تبریز، دوره 47، شماره 4، زمستان 1396، صفحه 1523-1535.
[49] A. Karimi, F. Aminifar, A. Fereidunian, and H. Lesani, "Energy storage allocation in wind integrated distribution networks: An MILP-Based approach", Renewable Energy, Vol. 134, April 2019, pp.1042-1055.
[50] M. Nozarian, A. H. Nikoofard, and A. Fereidunian, "Efficient MILP formulations for AC optimal power flow to reduce computational effort", International Transactions on Electrical Energy Systems, Vol. 30, No. 8, August 2020,p.e12434.
[51] M. E. Baran, and F. F. Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing", IEEE Transactions on Power delivery, Vol. 4, No. 2, April 1989, pp.1401-1407.
[52] Generalized Algebraic Modeling Systems (GAMS). <http://www.gams.com>.
[53] L. C. Coelho, "Linearization of the product of two variables", jan 2016, http://www.leandro-coelho.com/linearization-product-variables/2017-01-20/.