[1] لیلا محمدیان، ابراهیم بابائی و محمد باقر بناء شریفیان، "ارائه شیوه جدیدی برای مدلسازی مبدل Cuk بر مبنای گراف سیگنال جریان و کنترل آن به روش مقاوم از نوع حساسیت ترکیبی"، نشریه مدلسازی در مهندسی، دوره 15، شماره 51، زمستان 1396، صفحه 275-288.
[2] سید محمد مهدی میرطلائی و گلناز تاجمیر، "طراحی، مدلسازی و ساخت یک مبدل Z-Source بهره بالا برای کاربرد در اتصال منابع انرژی تجدیدپذیر به شبکه برق"، نشریه مدلسازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 221-229.
[3] T. D. Duong, M. K. Nguyen, T. T. Tran, Y. C. Lim, and J. H. Choi, “Transformerless high step-up DC-DC converters with switched-capacitor network”, Electronics, Vol. 8, No. 12, 2019, p. 1420.
[4] محمد رضا بنائی و حسین اژدرفائقی بناب، "ارائه، بررسی و مقایسه مبدلهای DC-DC جدید تک کلیده با ضریب بهره بالا و تنش ولتاژ کم دو سر کلید"، نشریه مدلسازی در مهندسی، دوره 17، شماره 56، بهار 1398، صفحه 347-366.
[5] W. Hassan, J. L. Soon, S. Gautam, D. D. C. Lu, and W. Xiao, “Optimized Coupled Inductor DC/DC Converter by Integrating Snubber Circuit with Voltage Lift Technique”, IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, October 2020, pp. 1401-1405.
[6] X. Fan, H. Sun, Z. Yuan, Z. Li, R. Shi, and N. Ghadimi, “High voltage gain DC/DC converter using coupled inductor and VM techniques”, IEEE Access, Vol. 8, 2020, pp. 131975-131987.
[7] W. Hassan, Y. Lu, M. Farhangi, D. D. C. Lu, and W. Xiao, “Design, analysis and experimental verification of a high voltage gain and high-efficiency DC–DC converter for photovoltaic applications”, IET Renewable Power Generation, Vol. 14, No. 10, 2020, pp. 1699-1709.
[8] H. Xie, and R. Li, “A novel switched-capacitor converter with high voltage gain”, IEEE Access, Vol. 7, 2019, pp. 107831-107844.
[9] G. Zhang, Z. Wang, S. S. Yu, S. Z. Chen, B. Zhang, H. H. C. Iu, and Y. Zhang, “A generalized additional voltage pumping solution for high-step-up converters”, IEEE Transactions on Power Electronics, Vol. 34, No. 7, 2018, pp. 6456-6467.
[10] Z. Ye, Y. Lei, and R. C. Pilawa-Podgurski, “The cascaded resonant converter: A hybrid switched-capacitor topology with high power density and efficiency”, IEEE Transactions on Power Electronics, Vol. 35, No. 5, 2019, pp. 4946-4958.
[11] N. Vosoughi Kurdkandi, M. Farhadi, E. Babaei, and P. Ghavidel, “Design and analysis of a switched‐capacitor DC‐DC converter with variable conversion ratio”, International Journal of Circuit Theory and Applications, Vol. 48, No. 10, 2020, pp. 1638-1657.
[12] S. W. Seo, D. K. Lim, and H. H. Choi, “High step-up interleaved converter mixed with magnetic coupling and voltage lift”, IEEE Access, Vol. 8, 2020, pp. 72768-72780.
[13] T. Nouri, N. Nouri, and N. Vosoughi, “A Novel High Step-Up High Efficiency Interleaved DC–DC Converter With Coupled Inductor and Built-In Transformer for Renewable Energy Systems”, IEEE Transactions on Industrial Electronics, Vol. 67, No. 8, 2019, pp. 6505-6516.
[14] H. Lei, R. Hao, X. You, and F. Li, “Nonisolated High Step-Up Soft-Switching DC–DC Converter With Interleaving and Dickson Switched-Capacitor Techniques”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 8, No. 3, 2019, pp. 2007-2021.
[15] M. Farhadi‐Kangarlu, A. Moallemi Khiavi, and Y. Neyshabouri, “A non‐isolated single‐input dual‐output boost DC–DC converter”, IET Power Electronics, 2021, Early View.
[16] B. Sharma, and J. Nakka, “Single-phase cascaded multilevel inverter topology addressed with the problem of unequal photovoltaic power distribution in isolated dc links”, IET Power Electronics, Vol. 12, No. 2, 2018, pp. 284-294.
[17] Z. Saadatizadeh, P.C. Heris, E. Babaei, and M. Sabahi, “A new nonisolated single-input three-output high voltage gain converter with low voltage stresses on switches and diodes”, IEEE Transactions on Industrial Electronics, Vol. 66, No. 6, 2018, pp. 4308-4318.
[18] Y. Wang, Y. Qiu, Q. Bian, Y. Guan, and D. Xu, “A single switch quadratic boost high step up DC–DC converter”, IEEE Transactions on Industrial Electronics, Vol. 66, No. 6, 2018, pp. 4387-4397.
[19] L. Yang, T. Liang and J. Chen, “Transformerless DC–DC Converters With High Step-Up Voltage Gain”, IEEE Transactions on Industrial Electronics, Vol. 56, No. 8, 2099, pp. 3144-3152.
[20] Y. Tang, T. Wang, and Y. He, “A switched-capacitor-based active-network converter with high voltage gain”, IEEE transactions on power electronics, Vol. 29, No. 6, 2013, pp. 2959-2968.
[21] M. Karthikeyan, R. Elavarasu, P. Ramesh, C. Bharatiraja, P. Sanjeevikumar, L. Mihet-Popa, and M. Mitolo, “A hybridization of Cuk and boost converter using single switch with higher voltage gain compatibility”, Energies, Vol. 13, No. 9, 2020, p. 2312.
[22] S. Kumaravel, R. A. Narayanankutty, V. S. Rao, and A. Sankar, “Dual input–dual output DC–DC converter for solar PV/battery/ultra-capacitor powered electric vehicle application”, IET Power Electronics, Vol. 12, No. 13, 2019, pp. 3351-3358.
[23] L. Yang and T. Liang, “Analysis and Implementation of a Novel Bidirectional DC–DC Converter,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 1, 2012, pp. 422-434.
[24] Y. Gu, Y. Chen, B. Zhang, D. Qiu and F. Xie, “High Step-Up DC–DC Converter With Active Switched LC-Network for Photovoltaic Systems”, IEEE Transactions on Energy Conversion, Vol. 34, No. 1, 2019, pp. 321-329.
[25] A. Dastgiri, M. Hosseinpour, F. Sedaghati, and S. R. Mousavi-Aghdam, “A High Step-Up DC-DC Converter with Active Switched LC-Network and Voltage-Lift Circuit”, 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC) , 2020, pp. 1-7.
[26] M. Lakshmi and S. Hemamalini, “Nonisolated High Gain DC–DC Converter for DC Microgrids”, IEEE Transactions on Industrial Electronics, Vol. 65, No. 2, 2018, pp. 1205-1212.