طراحی کنترل کننده حالت لغزشی برای موتور کلاف صوتی با استفاده از رویتگر غیرخطی

نوع مقاله : مقاله برق

نویسندگان

1 گروه برق ، دانشکده فنی مهندسی، دانشگاه حکیم سبزواری، سبزوار، ایران.

2 دانشکده مهندسی برق و کامپیوتر، دانشگاه حکیم سبزواری، ایران.

چکیده

موتورهای کلاف صوتی، در تجهیزات بسیار کوچک مانند دوربین تلفن های همراه استفاده می شوند و استفاده از روش های کنترلی مقاوم، مانند کنترل حالت لغزشی در آن ها اجتناب ناپذیر است. مهمترین خصوصیت کنترل حالت لغزشی تغییرناپذیری آن نسبت به نامعینی های سازگار بوده که به دلیل استفاده از تابع علامت در ورودی سیستم می باشد. تغییرناپذیری خاصیتی قویتر از مقاوم بودن است. اما این روش کنترلی، نسبت به نامعینی ناسازگار تغییرپذیر و حساس می باشد. همین امر استفاده از کنترل حالت لغزشی در موتورهای کلاف صوتی را با چالش مواجه کرده است زیرا در مدل دینامیکی آن ها نامعینی ناسازگار وجود دارد. در این مقاله برای حل این مشکل، ابتدا ورودی سیستم را با استفاده از کنترل حالت لغزشی محاسبه نموده و سپس ضرایب سطح لغزشی را طوری تعیین می کنیم که اثر نامعینی ناسازگار بر روی سیستم حلقه بسته حذف شده و تغییرناپذیری سیستم محفوظ بماند. در ضمن به دلیل اینکه متغیرهای حالت سیستم در دسترس نیستند یک رویتگر غیرخطی جدید نیز برای شناسایی مدل سیستم پیشنهاد شده است. در شبیه سازی از مدل الکترومکانیکی موتور استفاده می نماییم که هم شامل نامعینی سازگار بوده و هم نامعینی ناسازگار. نتایج شبیه سازی گویای مزایای روش پیشنهادی خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Design of Sliding Mode Controller for Voice Coil Motor Using Nonlinear Observer

نویسندگان [English]

  • Ali Karami-Mollaee 1
  • Ali Reza Khakshoor-Robat 2
1 Electrical and Computer Engineering Faculty, Hakim Sabzevari University, Sabzevar, Iran.
2 Faculty of Electrical and Computer Engineering, Hakim Sabzevari University, Sabzevar, Iran.
چکیده [English]

Voice coil motors (VCM) are used in very small equipment such as mobile phone cameras and the use of a robust control feature as sliding mode control (SMC) is inevitable in them. The most important property of SMC is its invariant against matched disturbances and uncertainties which is due to the using of Sign function in input control signal. The invariant property is stronger than robustness. But, this method is not invariant with respect to the mismatched uncertainties i.e. is variant and sensitive. This is the challenge of SMC in VCM because of existents mismatched uncertainty in their models. To solve this problem in this paper, input control signal is calculated at first via SMC and then, coefficients of the sliding surface are determined in such a way that the effect of mismatched uncertainties or disturbances is removed in closed loop system and invariant property is retained. The proposed approach is simple in concept and realization. Moreover, due to the inaccessible system states, a new nonlinear observer is proposed for system model identification. In simulation, the electro-mechanical model of motor has been used which has both matched and mismatched uncertainties. Simulation results show the effectiveness of this approach.

کلیدواژه‌ها [English]

  • Voice Coil Motor
  • Nonlinear Observer
  • Mismatched Uncertainty
  • sliding mode control
 
 
[1] H. K. Kim, S. H. Park, and S. I. Han, “Precise friction control for the nonlinear friction system using the friction state observer and sliding mode control with recurrent fuzzy neural networks”, Elsevier, Mechatronics, Vol. 19, 2009, pp. 805–815.
[2] S. Southward, C. Radcliffe, and C. MacCluer, “Robust nonlinear stick-slip friction compensation”, Transactions of the ASME (American Society of Mechanical Engineering), Journal of Dynamic Systems, Measurement and Control, Vol. 113, No. 4, 1991, pp. 639–645.
[3] J. D. Hsu, C. L. Tsai, and Y. Y. Tzou, “Design and implementation of a voice-coil motor servo control IC for auto-focus mobile camera applications”, IEEE 38th Annual Power Electronics Specialists Conference, Florida, USA, 2007, pp. 1357-1362.
[4] S. K. Lin, C. M. Wang, and S. J. Wang, “Design and implementation of anti-hand shaking position control for a voice coil motor”, Elsevier, Journal of Applied Physics, Vol. 103, No. 7, 2008, pp. 128-131.
[5] A. Abbasi, and S. S. Aghaamoo, “Designing L1 adaptive control for stabilizing chaotic systems with uncertainty in the model”, Journal of Modeling in Engineering, Vol. 16, No. 52, 2018, pp. 171-181 (in Persian).
[6] H. Nourisola, B. Ahmadi, A. Azizi, and A. Rikhtegare-Giasi, “Robustness of magnetic levitation by using feedback linearization back-stepping and nonlinear disturbance observer”, Journal of Modeling in Engineering, Vol. 15, No. 49, 2017, pp. 29-38 (in Persian).
[7] A. Izadinasab, and M. Ghanbari, “Control of sensorless PMSM using state dependent model reference adaptive system and adaptive augmented observer”, Journal of Modeling in Engineering, Vol. 18, No. 63, 2021 (in Persian).
[8] A. Karami-Mollaee, and E. Rajabi, “Dynamic sliding mode control design for nonlinear systems using sliding mode observer”, Tabriz Journal of Electrical Engineering, Vol. 47, No. 1, 2017, pp. 239-248 (in Persian).
[9] A. Karami-Mollaee, N. Pariz, and H. M. Shanechi, “Position control of servomotors using neural dynamic sliding mode”, Transactions of the ASME (American Society of Mechanical Engineering), Journal of Dynamic Systems, Measurement and Control, Vol. 133, No. 6, 2011, pp. 141-150.
[10] H. Lee, and V. I. Utkin, “Chattering suppression methods in sliding mode control systems”, Elsevier, Annual Reviews in Control, Vol. 31, No. 2, 2007, pp. 179-188.
[11] W. Perruquetti, and J. Pierre-Barbot, Sliding mode control in engineering, Marcel Dekker, 2002.
[12] A. Levant, “Sliding order and sliding accuracy in sliding mode control”, International Journal of Control, Vol. 58, 1993, pp. 1247-1263.
[13] G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by second-order sliding mode control”, IEEE Transaction on Automatic Control, Vol. 43, No. 2, 1998, pp. 241-246.
[14] A. Levant, “Robust exact differentiation via sliding mode techniques”, Elsevier, Automatica, Vol. 34, 1998, pp. 379-384.
[15] M. L. Chan, V. W. Tao, and T. T. Lee, “Sliding mode controller for linear systems with mismatched time-varying uncertainties”, Elsevier, Journal of the Franklin Institute, Vol. 337, 2000, pp. 105-115.
[16] B. J. Han, “LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems”, IEEE Transaction on Automatic Control, Vol. 52, No. 4, 2007, pp. 736-742.
[17] C. C. Wen, and C. C. Cheng, “Design of sliding surface for mismatched uncertain systems to achieve asymptotical stability”, Elsevier, Journal of the Franklin Institute, Vol. 345, 2008, pp. 926-941.
[18] Y. Wang, C. Jiang, D. Zhou, and F. Gao, “Variable structure control for a class of nonlinear systems with mismatched uncertainties”, Elsevier, Applied Mathematics and Computation, Vol. 200, 2008, pp. 387-400.
[19] J. Yang, S. Li, and X. Yu, “Sliding-mode control for systems with mismatched uncertainties via a disturbance observer”, IEEE Transaction on Industrial Electronics, Vol. 60, No. 1, 2012, pp. 160-169.
[20] J. Yang, S. Li, J. Su, and X. Yu, “Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances”, Elsevier, Automatica, Vol. 49, 2013, pp. 2287-2291.
[21] D. Ginoya, P. D. Shendge, and S. B. Phadke, “Sliding mode control for mismatched uncertain systems using an extended disturbance observer”, IEEE Transaction on Industrial Electronics, Vol. 61, No. 4, 2013, pp. 1983-1992.
[22] J. Yang, J. Su, S. Li, and X. Yu, “High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach”, IEEE Transaction on Industrial Informatics, Vol. 10, No. 1, 2014, pp. 604-614.
[23] X. Du, X. Fang, and F. Liu, “Continuous full-order nonsingular terminal sliding mode control for systems with matched and mismatched disturbances”, IEEE Access, Vol. 8, 2019, pp. 130970-130976.
[24] K. K. Shyu, Y. W. Tsai, and C. K. Lai, “A dynamic output feedback controller for mismatched uncertain variable structure systems”, Elsevier, Automatica, Vol. 7, 2001, pp. 775-779.
[25] X. G. Yan, S. K. Spurgeon, and C. Edwards, “Dynamic sliding mode control for a class of systems with mismatched uncertainty”, Wily, European Journal of Control, Vol. 11, 2005, pp. 1-10.
[26] W. Xiang, and F. Chen, “An adaptive sliding mode control scheme for a class of chaotic systems with mismatched perturbations and input nonlinearities”, Elsevier, Communication in Nonlinear Science and Numerical Simulation, Vol. 16, 2011, pp. 1-9.
[27] S. Mondal, and M. R. Soltanpour, “Chattering free adaptive multivariable sliding mode controller for systems with matched and mismatched uncertainty”, Elsevier, ISA Transactions, Vol. 52, 2013, pp. 335-341.
[28] S. Zaare, and C. Mahanta, “The position control of the ball and beam system using state-disturbance observe-based adaptive fuzzy sliding mode control in presence of matched and mismatched uncertainties”, Elsevier, Mechanical Systems and Signal Processing, Vol. 150, 2021, pp. 107243.
[29] A. Polyakov, and A. Poznyak, “Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control”, Elsevier, Automatica, Vol. 47, 2011, pp. 1450-1454.
[30] S. Shi, J. Gu, S. Xu, and H. Min, “Globally fixed-time high-order sliding mode control for new sliding mode systems subject to mismatched terms and its application”, IEEE Transactions on industrial electronics, Vol. 67, No. 12, 2020, pp. 10776-10786.
[31] A. C. Huang, and Y. C. Chen, “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties”, Elsevier, Automatica, Vol. 40, 2004, pp. 1939-1945.
[32] Y. C. Tsai, and A. C. Huang, “FAT-based adaptive control for pneumatic servo systems with mismatched uncertainties”, Elsevier, Mechanical Systems and Signal Processing, Vol. 22, 2008, pp. 1263-1273.
[33] H. L. Ngoc, N. Thanh, and S. K. Hong, “An extended multi-surface sliding control for matched/mismatched uncertain nonlinear systems through a lumped disturbance estimator”, IEEE Access, Vol. 8, 2020, pp. 91468-91475.
[34] A. Karami-Mollaee, “Design of dynamic sliding mode controller in the presence of both matched and mismatched uncertainty without chattering for nonlinear second order systems”, Journal of Control, Vol. 9, No. 1, 2015, pp. 47-57 (in Persian).
[35] A. Karami-Mollaee, “Design of dynamic sliding mode controller for active suspension system”, Modares Mechanical Engineering, Vol. 16, No. 2, 2016, pp. 51-58 (in Persian).
[36] A. Karam-Mollaee, H. Tirandaz, and O. Barambones, “Neural dynamic sliding mode control of nonlinear systems with both matched and mismatched uncertainties”, Elsevier, Journal of the Franklin Institute, Vol. 356, 2019, pp. 4577-4600.
[37] J.-J. E. Slotine, and W. Li, Applied nonlinear control, Prentice Hall, Englewood Cliffs, 1991.
[38] C.-F. Hsu, and K.-Y. Wong, “On-line constructive fuzzy sliding-mode control for voice coil motors”, Elsevier, Applied Soft Computing, Vol. 47, 2016, pp. 415-423.