مدلسازی و تشخیص عیب پرنده چهارموتوره دارای عیب ساختاری انحراف پیشرانش

نوع مقاله : مقاله مکانیک

نویسندگان

1 طراحی کاربردی، دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران

2 دانشیار/ طراحی کاربردی، دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران

3 استاد/ طراحی کاربردی،دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران

چکیده

در این پژوهش مدلسازی و تشخیص عیب دسته جدیدی از عیب‌های ربات پرنده چهارموتوره تحت عنوان عیب ساختاری انجام شده‌‌است. عیب ساختاری مورد بررسی، انحراف محور دوران یکی از موتورهای پرنده نسبت به راستای عمود بر پرنده است. این موضوع باعث می‌شود که نیروی پیشرانش موتور دارای عیب، در راستای عمودی نباشد و فرآیند کنترل سیستم با اختلال روبرو شود. تشخیص وقوع عیب مفروض در ترکیب با روش‌های کنترلی مناسب میتواند از آسیب‌های بعدی به سیستم جلوگیری کند. برای تشخیص عیب سیستم، سه گام طی شده‌است. نخست با استفاده از روش اویلر‌ -نیوتن، معادلات سینماتیکی و دینامیکی حاکم بر پرنده چهارموتوره معیوب به دست آمده‌‌است. در مرحله بعد برای آشکارسازی عیب، با طراحی رؤیتگر، تخمین متغیرهای حالت سیستم صورت می‌گیرد و در نهایت با استفاده از تعریف تابع انرژی مناسب بر اساس مانده‌ها، به کمک خروجی سیستم (حالت‌های اندازه‌گیری شده سیستم) و حالت‌های تخمینی، زمان وقوع عیب تشخیص داده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and Fault Detection of Quadrotor with Rotor Thrust Deviation Fault

نویسندگان [English]

  • Hashem Aghakhani 1
  • Parham Rezaei 1
  • Moosa Ayati 2
  • Mohammad Mahjoob 3
1 Mechanical Engineering, University of Tehran, Tehran, Iran
2 Associate Professor, Mechanical Engineering. University of Tehran.Tehran, Iran
3 Mechanical Engineering. University of Tehran. Tehran, Iran.
چکیده [English]

In this study, modeling and fault detection of a novel faulty quadrotor is presented. It is assumed that a quadrotor vehicle has encountered a fault during a flight accident, and as a result, one of the rotors does not operate vertically. Although the rotor's rotational axis has deviated from the vertical direction, the amount of produced thrust remains constant. Detecting this fault along with utilizing a proper controlling approach can reduce the risk of failure in the vehicle. Based on this statement, the procedure of this study has been developed in three main stages. First, the kinematic and dynamic equations governing the faulty system are driven using Newton's second law and Euler's principle. Then, equations governing the faulty system and the Thau observer are employed to calculate the residual value. This parameter is calculated based on the differences between states’ measurement and estimation. Eventually, by comparing the computed residual value with the assumed threshold, thrust deviation in the shortest possible time has been detected.

کلیدواژه‌ها [English]

  • Quadrotor
  • Structural Fault
  • Thrust Deviation
  • Dynamical Modeling
  • Fault Detection
  • Residual Calculation
[1] B. J. Emran, and H. Najjaran, “A review of quadrotor: An underactuated mechanical system”, Annual Reviews in Control, Vol. 46, 2018, pp. 165–180.
[2] G. Farid, M. Hongwei, S. M. Ali, and Q. Liwei, “A review on linear and nonlinear control techniques for position and attitude control of a quadrotor”, Control and Intelligent Systems, Vol. 45, No. 1, 2017, pp. 43–57.
[3] S. Bouabdallah, A. Noth, and R. Siegwan, “PID vs LQ Control Techniques Applied to an Indoor Micro Quadrotor”, IEEE/RSJ International Conference on Intelligent Robots and System, 2004, pp. 2451–2456.
[4] M. Vahdanipour, and M. Khodabandeh, “Adaptive fractional order sliding mode control for a quadrotor with a varying load”, Aerospace Science and Technology, Vol. 86, 2019, pp. 737–747.
[5] M. Labbadi, and M. Cherkaoui, “Robust integral terminal sliding mode control for quadrotor UAV with external disturbances”, International Journal of Aerospace Engineering, Vol. 2019 ,2019, p. 2019.
[6] M. A. Tofigh, M. J. Mahjoob, and M. Ayati, “Dynamic modeling and nonlinear tracking control of a novel modified quadrotor”, International Journal of Robust and Nonlinear Control, Vol. 28, No. 2, 2018, pp. 552–567.
[7] A. Vahidi-Moghaddam, A. Rajaei, and M. Ayati, “Disturbance-observer-based fuzzy terminal sliding mode control for MIMO uncertain nonlinear systems”, Applied Mathematical Modelling, Vol. 70, 2019, pp. 109–127.
]8[ حمید نوری‌سالا، بهار احمدی و امیر ریخته‌گر غیاثی، "مقاوم‌سازی سیستم شناور مغناطیسی با استفاده از کنترل‌کننده خطی‌ساز فیدبک گام به عقب با رویتگر اغتشاش غیر‌خطی"، نشریه مدلسازی در مهندسی، دوره 15، شماره 49، تابستان 1396، صفحه 29-38.
 [9] M. A. Tofigh, M. Mahjoob, and S.M. Ayati, “Feedback Linearization and BackStepping controller aimed at position tracking for a novel five-rotor UAV”, Modares Mechanical Engineering, Vol. 15, No. 9, 2015, pp. 247–254.
[10] M.A. Tofigh, M. Mahjoob, and M. Ayati, “Comparing of tow Feedback Linearization method aimed at position tracking control for a novel six-rotor UAV”, Modares Mechanical Engineering, Vol. 15, No. 9, 2015, pp. 199–208.
[11] N. Mouhssine, M. N. Kabbaj, M. Benbrahim, and C. El Bekkali, “Sensor fault detection of quadrotor using nonlinear parity space relations”, International Conference on Electrical and Information Technologies (ICEIT), 2017, pp. 1–6.
]12[ فاطمه قادری و فرید شاهمیری، "مدل‌سازی ریاضی و بررسی تأثیر مساحت دم افقی بر وضعیت پایداری بالگرد یک روتور اصلی در پرواز کروز"، نشریه مدلسازی در مهندسی، دوره 17، شماره 58، پاییز 1398، صفحه 69-80.
 [13] B. Hu, and P. J. Seiler, “Certification analysis for a model-based UAV fault detection system”, AIAA Guidance, Navigation, and Control Conference, 2014, p. 610.
[14] R.J. Patton, and J. Chen, “Observer-based fault detection and isolation: Robustness and applications”, Control Engineering Practice, Vol. 5, No. 5, 1997, pp. 671–682.
[15] G. Heredia, A. Ollero, M. Bejar, and R. Mahtani, “Sensor and actuator fault detection in small autonomous helicopters”, Mechatronics, Vol. 18, No. 2, 2008, pp. 90–99.
]16[ حسین شریف زاده، مصطفی جزائری، "طراحی تخمین گر حالت و آشکارساز داده غلط سیستم‌های قدرت با استفاده از شبکه عصبی پرسپترون"، نشریه مدلسازی در مهندسی، دوره 9، شماره 26، پاییز 1390، صفحه 13-22.
 [17] F. E. Thau, “Observing the state of non-linear dynamic systems”, International journal of control, Vol. 17, No. 3, 1973, pp. 471–479.
[18] Y. Zhong, W. Zhang, Y. Zhang, J. Zuo, and H. Zhan, “Sensor Fault Detection and Diagnosis for an Unmanned Quadrotor Helicopter”, Journal of Intelligent & Robotic Systems, Vol. 96, No. 3–4, 2019, pp. 555–572.
[19] N. P. Nguyen, N. Xuan Mung, and S.K. Hong, “Actuator fault detection and fault-tolerant control for hexacopter”, Sensors, Vol. 19, No. 21, 2019, pp. 4721.
[20] G. R. Drozeski, “A fault-tolerant control architecture for unmanned aerial vehicles”,  Georgia Institute of Technology, 2005.
[21] H. Rafaralahy, E. Richard, M. Boutayeb, and M. Zasadzinski, “Simultaneous observer based sensor diagnosis and speed estimation of unmanned aerial vehicle”, 47th IEEE Conference on Decision and Control, 2008, pp. 2938–2943.
[22] M. H. Amoozgar, A. Chamseddine, and Y. Zhang, “Experimental test of a two-stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter”, Journal of Intelligent and Robotic Systems, Vol. 70, No. 1–4, 2013, pp. 107–117.
[23] Y. Zhong, Y. Zhang, W. Zhang, J. Zuo, and H. Zhan, “Robust actuator fault detection and diagnosis for a quadrotor UAV with external disturbances”, IEEE Access, Vol. 6, 2018, pp. 48169–48180.
[24] X. Wang, S. Sun, E.-J. van Kampen, and Q. Chu, “Quadrotor fault tolerant incremental sliding mode control driven by sliding mode disturbance observers”, Aerospace Science and Technology, Vol. 87, 2019, pp. 417–430.
[25] A. Agarwal, E. M. Ng, and K. H. Low, “Adaptive Control of Unmanned Quadrotor with Partial Actuator Failure using Model Reference Adaptive Control (MRAC) with Dynamic Inversion”, International Conference on Unmanned Aircraft Systems (ICUAS), 2021, pp. 10–19.
[26] P. Tang, D. Lin, D. Zheng, S. Fan, and J. Ye, “Observer based finite-time fault tolerant quadrotor attitude control with actuator faults”, Aerospace Science and Technology, Vol. 104, 2020, p. 105968.
[27] Z. Hou, P. Lu, and Z. Tu, “Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure”, Aerospace Science and Technology, Vol. 98, 2020, p. 105716.
]28[ هاشم آقاخانی، سید موسی آیتی و محمد محجوب، "آشکارسازی عیب و پایدارسازی تطبیقی پرنده چهارموتوره با عیب انحراف پیشرانش موتور"، دانشکده مهندسی مکانیک دانشگاه تهران، پاییز 1396.
[29] H. Ríos, E. Punta, and L. Fridman, “Fault detection and isolation for nonlinear non-affine uncertain systems via sliding-mode techniques”, International Journal of Control, Vol. 90, No. 2, 2017, pp. 218–230.
[30] B. J. Emran, J. Dias, L. Seneviratne, and G. Cai, “Robust adaptive control design for quadcopter payload add and drop applications”, 2015 34th Chinese Control Conference (CCC), 2015, pp. 3252–3257.