بهینه‌سازی پویای راکتورهای هیدروژناسیون استیلن با در نطر گرفتن کاهش فعالیت کاتالیست

نوع مقاله : مقاله شیمی

نویسندگان

1 دانشجو دکتری، دانشکده مهندسی شیمی، دانشگاه سیستان و بلوچستان

2 مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان،زاهدان، ایران

3 دانشگاه سیستان و بلوچستان

4 گروه مهندسی شیمی، دانشگاه بجنورد

چکیده

اتیلن یک ماده بسیار مهم در صنایع پتروشیمی است که کاربرد اصلی آن در تولید پلیمرها است. معمولا از کراکینگ بخار اتان یا نفتا جهت تولید اتیلن استفاده می‌شود. مقدار کمی استیلن در این فرآیند تولید می‌شود. مقدار استیلن در محصول نباید از ppm 1 تجاوز کند، زیرا استیلن برای کاتالیست‌های پلیمرسازی واحدهای پایین‌ دستی مضر می‌باشد. واحد هیدروژن‌دار کردن استیلن جهت حذف استیلن در واحدهای صنعتی طراحی شده است. در این واحد، حذف استیلن تا حداکثر ppm 1 در محصول خروجی و انتخاب‌پذیری اتیلن از اهمیت ویژه‌ای برخوردار می‌باشد. در این مقاله بهینه‌سازی پویای راکتورهای هیدروژن‌دار کردن استیلن پتروشیمی مارون با در نطر گرفتن کاهش فعالیت کاتالیست ارائه شده است. در این مطالعه، از روش تکامل تفاضلی به عنوان یک روش قدرتمند برای تعیین پروفایل دمایی بهینه پویا برای دست‌یابی به بیشینه‌ی انتخاب‌پذیری اتیلن در یک دوره عملیاتی 720 روزه استفاده شده است. سپس به مقایسه‌ی نتایج بهینه‌سازی با شرایطی که در آن دماهای ورودی به راکتورها در 55 درجه سانتیگراد ثابت نگه داشته شوند و با شرایطی که در آن این دماها به طور خطی از 55 تا 90 درجه سانتیگراد افزایش داده ‌شوند، پرداخته شده است. نتایج نشان داد وقتی دماهای ورودی در 55 درجه سانتیگراد ثابت باشند، استیلن خروجی از ppm 1 تجاوز می‌کند اما بهترین انتخاب‌پذیری بدست می‌آید. با افزایش خطی دماهای ورودی، استیلن خروجی از ppm 1 کمتر می‌شود اما انتخاب‌پذیری کاهش می‌یابد. یک مسیر دمایی بهینه برای وقتی که استیلن خروجی از ppm 1 کمتر می‌باشد، بیشینه‌ی انتخاب‌پذیری را بدست می‌آورد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamic optimization of acetylene hydrogenation reactors with considering catalyst deactivation

نویسندگان [English]

  • Taha Ghiyami 1
  • Farhad Shahraki 2
  • Jafar Sadeghi 3
  • Mehdi Bayat 4
1 1. PhD Student, Department of Chemical Engineering, University of Sistan and Baluchestan
2 Department of Chemical Engineering, Shahid Nikbakht Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
3 Associate professor, Department of Chemical Engineering, University of Sistan and Baluchestan
4 Department of Chemical Engineering, Faculty of Engineering, University of Bojnord, Bojnord, Iran
چکیده [English]

Ethylene is a very important material in petrochemical industries, whose chief application is producing polymers. The steam cracking of naphtha or ethane is usually applied to produce ethylene. A small amount of acetylene is produced in this process. The amount of acetylene in the product stream should not exceed 1 ppm, because it is harmful to polymerization catalysts in downstream units. The acetylene hydrogenation unit is designed for acetylene removal in industrial plants. In this unit, the removal of acetylene up to 1 ppm in the product stream and ethylene’s selectivity are of great importance. In this paper, the dynamic optimization of acetylene hydrogenation reactors of Marun petrochemical complex with considering catalyst deactivation is presented. In this study, the differential evolution (DE) method is used as a powerful method for determination of a dynamic optimal temperature profile to achieve maximum of ethylene’s selectivity in a period of 720 operating days. Then, the optimal results are compared with the condition wherein the inlet temperatures of the reactors are maintained constant at 55 ˚C and with the condition wherein the inlet temperatures of them increase linearly from 55 to 90 ˚C. The results showed when the inlet temperatures are kept 55 ˚C, the outlet acetylene exceed 1 ppm, but the best selectivity is achieved. With a linear increase in the inlet temperatures, the outlet acetylene is below 1 ppm but the selectivity is decreased. An optimal temperature profile maximizes the selectivity when the outlet acetylene is below 1 ppm.

کلیدواژه‌ها [English]

  • Optimization
  • Reactor
  • Hydrogenation
  • Acetylene
  • Ethylene&rsquo
  • s selectivity
  • Differential evolution
 
[1] M. Rahimpour, O. Dehghani, M. Gholipour, M. S. Yancheshmeh, S. S. Haghighi and A. Shariati, "A novel configuration for Pd/Ag/α-Al2O3 catalyst regeneration in the acetylene hydrogenation reactor of a multi feed cracker", Chemical engineering journal, Vol. 198, 2012, PP. 491-502.
[2] M. J. Vincent and R. D. Gonzalez, "A Langmuir–Hinshelwood model for a hydrogen transfer mechanism in the selective hydrogenation of acetylene over a Pd/γ-Al2O3 catalyst prepared by the sol–gel method", Applied Catalysis A: General, Vol. 217, No.1-2, 2001, PP. 143-156.
[3] N. Schbib, A. Errazu, J. Romagnoli and J. Porras, "Dynamics and control of an industrial front-end acetylene converter", Computers & chemical engineering, Vol. 18, 1994, PP. 355-359.
[4] R. Gobbo, R. d. P. Soares, M. A. Lansarin, A. R. Secchi and J. M. P. Ferreira, "Modeling, simulation, and optimization of a front-end system for acetylene hydrogenation reactors", Brazilian Journal of Chemical Engineering, Vol. 21, No.4, 2004, PP. 545-556.
[5] A. Bos and K. Westerterp, "Mechanism and kinetics of the selective hydrogenation of ethyne and ethene", Chemical engineering and processing: process intensification, Vol. 32, No.1, 1993, PP. 1-7.
[6] O. Dehghani, M. R. Rahimpour and A. Shariati, "An Experimental Approach on Industrial Pd-Ag Supported α-Al2O3 Catalyst Used in Acetylene Hydrogenation Process: Mechanism, Kinetic and Catalyst Decay", Processes, Vol. 7, No.3, 2019, PP. 136.
[7] N. Mostoufi, A. Ghoorchian and R. Sotudeh-Gharebagh, "Hydrogenation of acetylene: Kinetic studies and reactor modeling", International Journal of Chemical Reactor Engineering, Vol. 3, No.1, 2005, PP.
[8] C. Urmes, J.-M. Schweitzer, A. Cabiac and Y. Schuurman, "Kinetic Study of the Selective Hydrogenation of Acetylene over Supported Palladium under Tail-End Conditions", Catalysts, Vol. 9, No.2, 2019, PP. 180.
[9] L. P. Ren Feng, Fengwu Li, Daidi Xu, Ronghui Shi, Libo Dai, Ji-Jun Zou, Min Zhang, "The kinetic mechanism of acetlene hydrogenation to prepare ethane over FexOy clusters: A DFT study", Chemical engineering science, Vol. 230, 2021, PP. 116170.
[10] S. Z. Zhu XU, Mingyuan Zhu, "Ni catalyst supported on nitrogen-doped activated carbon for selective hydrogenation of acetylene with high concentration", Catalysis Communications, Vol. 149, 2021, PP. 106241.
[11] T. L. Kai Li, Junyi He, Ben WL Jang, "Selective hydrogenation of acetylene over Pd/CeO 2", Frontiers Chemical Engineering Science, 2020, PP. 1-8.
[12] E. P. BS Bal'zhinimaev, EV Kovalev, "Selective hydrogenation of acetylene on Pd fiberglass catalysts", Catalysis in Industry, Vol. 12, 2020, PP. 56-65.
[13] J. X. Yang Guo, Lijuan Jia, Yuzhen Shi, Jian Zhang, Qiuling Chen, Qingqing Guan, "Preparation of MoS2 nanosheets to support Pd species for selective steerable hydrogenation of acetylene", Journal of Material Science, Vol. 56, 2021, PP. 2129-2137.
[14] N. S. Schbib, M. A. García, C. E. Gígola and A. F. Errazu, "Kinetics of front-end acetylene hydrogenation in ethylene production", Industrial & engineering chemistry research, Vol. 35, No.5, 1996, PP. 1496-1505.
[15] C. Godinez, A. Cabanes and G. Villora, "Experimental study of the front-end selective hydrogenation of steam-cracking C2-C3 mixture", Chemical engineering and processing: process intensification, Vol. 34, No.5, 1995, PP. 459-468.
[16] B. Rijo, F. Lemos, I. Fonseca and A. Vilelas, "Development of a model for an industrial acetylene hydrogenation reactor using plant data–Part I", Chemical engineering journal, Vol. 379, 2020, PP. 122390.
[17] H. Aeowjaroenlap, K. Chotiwiriyakun, N. Tiensai, W. Tanthapanichakoon, S. Spatenka and A. Cano, "Model-based optimization of an acetylene hydrogenation reactor to improve overall ethylene plant economics", Industrial & engineering chemistry research, Vol. 57, No.30, 2018, PP. 9943-9951.
[18] M. Azizi, A. Zolfaghari Sharak, S. A. Mousavi, F. Bakhtiari Ziabari, J. Shariati and S. Azizi, "Study on the acetylene hydrogenation process for ethylene production: Simulation, modification, and optimization", Chemical Engineering Communications, Vol. 200, No.7, 2013, PP. 863-877.
[19] M. Szukiewicz and R. Petrus, "Selective hydrogenation of an acetylene process: An example of modeling an industrial reactor process", Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, Vol. 22, No.12, 1999, PP. 1059-1061.
[20] F. X. Fu-Ming Xie, Zhi-Shan Liang,  and X.-L. Luo, "Online estimation for catalyst activity of acetylene hydrogenation reactor", Asia-Pacific Journal of Chemical Eingineering, Vol. 15, No.2, 2020, PP. 2406-24018.
[21] M. Samavati, H. A. Ebrahim and Y. Dorj, "Effect of the operating parameters on the simulation of acetylene hydrogenation reactor with catalyst deactivation", Applied Catalysis A: General, Vol. 567, 2018, PP. 45-55.
[22] M. Rafizadeh and M. Moazeni, "Modelling, Sensitivity analysis and optimization of acetylene hydrogenation reactor", IOSR Journal of Applied Chemistry, Vol. 10, No. 9, 2017, PP. 65-78.
[23] A. Hattachai, K. Chotiwiriyakun, N. Tiensai, W. Tanthapanichakoon, S. Spatenka and A. Cano, "Model-based optimization of an acetylene hydrogenation reactor to improve overall ethylen plant economics", Industrial & Engineering Chemistry Research, Vol. 57, No. 30, 2018, PP. 9943-9951.
[24] Y. Zhencheng, R, Debao and C. Hui, "Hybrid spider monkey optimization algorithm and its application in optimization of acetylene hydogenation parameters", Journal of East China University of Science and Technology, Vol. 45, No.2, 2019, PP. 241-249.
[25] Z. Liang, F. Xie, F. Xu and X. Luo, "Full cycle dynamic optimization maintaining the operation margin  of acetylene hydrogenation fixed-bed reactor", Journal of the Taiwan Institute of Chemical Engineer, Vol. 108, 2020, PP. 29-42.
[26] طه قیامی، فرهاد شهرکی، جعفر صادقی و مهدی بیات، "بررسی تاثیر پارامترهای عملیاتی بر عملکرد راکتورهای هیدروژناسیون استیلن"، نشریه پژوهش‌های کاربردی مهندسی شیمی-پلیمر، دوره 5، شماره 2، تابستان 1400، صفحه 91- 104.
[27] B. Mansoornejad, N. Mostoufi and F. Jalali-Farahani, "A hybrid GA–SQP optimization technique for determination of kinetic parameters of hydrogenation reactions", Computers & chemical engineering, Vol. 32, No.7, 2008, PP. 1447-1455.
[28] M. H. Rafiq, H. A. Jakobsen, R. Schmid and J. E. Hustad, "Experimental studies and modeling of a fixed bed reactor for Fischer–Tropsch synthesis using biosyngas", Fuel processing technology, Vol. 92, No.5, 2011, PP. 893-907.
[29] رضا بیگزاده، "بهینه‌سازی چند هدفه توسط الگوریتم ژنتیک برای افزایش انتقال حرارت در میکرو مبدلهای حرارتی"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 59، زمستان 1398، صفحه 25- 34.
[30] سید حسین فلاح و محمد صادق ولی‌پور، "مدلسازی و بهینه‌سازی نیروگاه دودکش خورشیدی با الگوریتم‌های SA و PSO "، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 75- 87.
[31] امین رضایی‌پناه، علی مبارکی و سعید بحرانی خادمی " بهینه‌سازی شبکه MLP با استفاده از الگوریتم ژنتیک موازی Fin Grain برای تشخیص سرطان سینه"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 57، تابستان 1398، صفحه 173- 186.
[32] حسین شریف‌زاده و نیما امجدی، " توزیع بهینه راکتیو با استفاده از الگوریتم بهینه‌سازی دسته ذرات"، نشریه مدل‌سازی در مهندسی، دوره 4، شماره 18، پاییز 1388، صفحه 67- 73.