طراحی یک جاذب کامل فرامواد چند-باند گرافنی با قابلیت قطبش غیرحساس برای کاربردهای تراهرتز

نوع مقاله : مقاله برق

نویسنده

دانشگاه گرمسار

چکیده

در این مقاله یک جاذب کامل فرامواد غیرحساس به قطبش بر پایه گرافن در محدوده فرکانس تراهرتز ارائه شده است. این جاذب از یک لایه الگوی گرافن در بالای ساختار، یک لایه جداکننده دی الکتریک و یک لایه طلا در پایین ساختار تشکیل شده است. در ساختار پیشنهادی، قابلیت جذب کامل با حذف کامل تابش و نور منعکس شده و اتلاف کامل انرژی تابشی بررسی شده است. در ابتدا، ساختار پیشنهادی و فرآیند طراحی آن مورد بررسی قرار گرفته و نشان داده شد که در سه باند، نتایج جذب کامل در فرکانس های 2، 95/2 و 75/3 تراهرتز به ترتیب 5/93%، 8/99% و 1/98% محقق شده است. همچنین، مکانیسم فیزیکی عملکرد ساختار توسط توزیع سطحی میدان الکتریکی و همچنین تغییرات هندسی ساختار بررسی شده است. علاوه بر این، طراحی ساختار پیشنهادی با سطح گرافن این مزیت را فراهم کرده تا بتوان فرکانس تشدید را بدون تغییر مجدد ساختار پیشنهادی، توسط تغییرات سطح انرژی فرمی و زمان واهلش گرافن تنظیم نمود. با بررسی انجام شده، مشخص شد که جاذب کامل پیشنهادی فرامواد به قطبش حساس نبوده و نسبت به زاویه تابش تحمل بیشتری دارد. بر این اساس، جاذب باندوسیع پیشنهادی در این مقاله، در فیلتر، شناسایی، تصویربرداری، ردیاب های خورشیدی و سایر کاربردها دارای پتانسیل بالقوه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of a Graphene-Based Multi-Band Metamaterial Perfect Absorber with Polarization-Insensitive Ability for Terahertz Applications

نویسنده [English]

  • Mohammad M Fakharian
University of Garmsar
چکیده [English]

This paper presents a graphene-based polarization-insensitive metamaterial perfect absorber at terahertz frequency range. The absorber consists of a graphene pattern layer at the top of the structure, a dielectric spacer layer, and an Au layer at the bottom of the structure. In the proposed structure, the ability of perfect absorption is investigated by the complete suppression of radiation and reflected light and the complete dissipation of incident energy. At the first, the proposed structure and its design process are verified and it is shown that in the three bands, the results of perfect absorption at frequencies of 2, 2.95 and 3.75 terahertz are achieved with absorption rates of 93.5%, 99.8% and 98.1%, respectively. Also, the physical mechanism of structure performance is investigated by the surface distribution of the electric field, as well as the geometric changes of the structure. In addition, the design of the proposed structure with graphene provides this advantage so that the resonant frequency can be adjusted by changing the Fermi energy level and graphene relaxation time without changing the proposed structure again. With the study, it is found that the proposed metamaterials perfect absorber is not sensitive to polarization and is more tolerant to the angle of incident radiation. Accordingly, the proposed broadband absorber in this paper has potential in imaging, detection, filtering, solar tracking and other applications.

کلیدواژه‌ها [English]

  • Perfect absorber
  • metamaterial
  • graphene
  • triple-band
  • polarization
  • terahertz
  • محمد جهاندار لاشکی، پژمان رضائی، محمدمهدی فخاریان "ساختار تار عنکبوتی به‌عنوان سطوح امپدانس بالا"، نشریهمدل سازی در مهندسی، دوره 12، شماره 38، پاییز 1393، صفحه 82-75.
  • زهرا موسوی راضی، پژمان رضایی و نیلوفر بهادری "آنتن میکرواستریپ جهتدار با استفاده از رولایه سطوح انتخابگر فرکانسی در محفظه تشدید فبری پرو" ، نشریه مدل سازی در مهندسی، دوره 13، شماره 42، پاییز 1394، صفحه 25-17.

 

  • علیرضا شریفی و جعفر خلیل پور "افزایش بهره و پهنای باند آنتن پچ با به کارگیری رولایه فراماده"، نشریه الکترومغناطیس کاربردی، دوره 3، شماره 3، تابستان 1394، صفحه 44-
  • Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies", Science, Vol. 314, No. 5801, pp. 977–980, 2006.
  • A. Cummer, B.I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures", Physical Review E, Vol. 74, No. 3, 2006, pp. 036621.
  • Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, "Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays", Materials Research Express, Vol. 5, No. 4, 2018, pp. 045802.
  • Zeng, X. Chen, Z. Yi, Y. Yi, and X. Xu, "Fabrication of pn heterostructure ZnO/Si moth-eye structures: antireflection, enhanced charge separation and photocatalytic properties", Applied Surface Science, Vol. 441, 2018, pp. 40–48.
  • L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, "Design of a broadband tunable terahertz metamaterial absorber based on complementary structural grapheme", Materials, Vol. 11, No. 4, 2018, pp. 540.
  • Yi, X. Li, X. Xu, X Chen, X. Ye, and Y. Yi, "Nanostrip-induced high tenability multipolar Fano resonances in a Au ring-strip nanosystem", Nanomaterials, Vol. 8:0568, 2018.
  • Vakil and N. Engheta, "Transformation optics using graphene", Science, Vol. 332, No. 6035, 2011, pp. 1291-1294.
  • Farmani, A. Mir, and Z. Sharifpour "Broadly tunable and bidirectional terahertz grapheme plasmonic switch based on enhanced Goos-Hanchen effect" Applied Surface Science, Vol. 453, 2018, pp. 358–364.
  • Li, J. Niu, and G. Wang "Dual-band, polarization-insensitive metamaterial perfect absorber based on monolayer graphene in the mid-infrared range" Results in Physics, Vol. 13, 2019, pp. 102313.
  • Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, and X. Ye, "High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk grapheme metamaterials", Physica Scripta, Vol. 94, No. 8, 2019, pp. 085805.
  • L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, "Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle", Optics Communications, Vol. 415, 2018, pp. 194–201.
  • Li and Y. Cheng, "Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure", Optics Communications. Vol. 462, 2020, pp. 125265.
  • Luo and Y. Cheng, "Thermally tunable terahertz metasurface absorber based on all dielectric indium antimonide resonator structure", Optical Materials, Vol. 102, 2020, pp. 109801.
  • Chen, Y. Cheng, and H. Luo, "A broadband tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped grapheme", Materials. Vol. 13, 2020, pp. 860.
  • K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, "Tunable graphene based metasurface for polarization-independent broadband absorption in lower mid infrared (MIR) range", IEEE Transactions on Electromagnetic Compatibility, Vol. 62, pp. 346–354, 2020.
  • I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber", Physical Review Letters, Vol. 100, 2008, pp. 207402.
  • Bhattacharyya, S. Ghosh, D. Chaurasiya, and K. V. Srivastava, "Wide-angle broadband microwave metamaterial absorber with octave bandwidth", IET Microw Antennas Propag. Vol. 9, 2015, pp. 1160–1166.
  • X. Yan, and J. S. Li, "Tunable all-graphene-dielectric single-band terahertz wave absorber", Journal of Physics D: Applied Physics, Vol. 52, 2019, pp. 275102.
  • A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, "Strong coupling of molecular and mid-infrared perfect absorber resonances", IEEE Photonics Technology Letters, Vol. 24, 2012, pp. 31–33.
  • Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: design, fabrication and characterization", Optics Express, Vol. 16, 2008, pp. 7181–7188.
  • Fang, X. Shi, C. Liu, X. Zhai, H. Li, and L. Wang, "Single-and dual-band convertible terahertz absorber based on bulk Dirac semimetal", Optics Communications, Vol. 462, 2020, pp. 125333.
  • Zhong, X. Jiang, X. Zhu, J. Chen, S. Wu, J. Zhang, J. Zhong, K. Yang, L. Zeng, S. Huang, Y. Chen, J. Zhang, L. Liang, Y. Xin, and H. Chen, "Design and measurement of a single-dual-band tunable metamaterial absorber in the terahertz band", Physica E, Vol. 124, 2020, pp. 114343.
  • Wu, X. Liu, and Z. Huang, "Broadband light absorption with doped silicon for the terahertz frequency", Optics & Laser Technology, Vol. 119, 2019, pp. 105657.
  • Song, M. Jiang, Y. Deng, and A. Chen, "Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material", Optics Communications, Vol. 464, 2020, pp. 125494.
  • P. Xu, J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, "Frequency-tunable metamaterial absorber with three bands", Optik, Vol. 172, 2018, pp. 1057–1063.
  • Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, "Novel three-band microwave metamaterial absorber", Journal of Electromagnetic Waves and Applications, Vol. 28, 2014, pp. 1478–1486.
  • R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, "Design of a polarization insensitive multiband terahertz metamaterial absorber", Journal of Physics D: Applied Physics, Vol. 46, 2013, pp. 195103.
  • X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, "Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure", Scientific Reports, Vol. 7, 2017, pp. 41373.
  • D. Xu, J. X. Li, A. X. Zhang, and Q. Chen, "Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips", Optics Express, Vol. 28, 2020, pp. 11482–11492.
  • Zamzam, P. Rezaei, and S. A. Khatami, "Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface", Physica E, Vol. 128, 2021, pp. 114621.
  • X. Wang, G. Z. Wang, L L. Wang, and X. Zhai, "Design of a five-band terahertz absorber based on three nested split-ring resonators", IEEE Photonics Technology Letters, Vol. 28, No. 3, 2015, pp. 307–310.
  • J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. P. Lee, "Dual broadband metamaterial absorber", Optics Express, Vol. 23, 2015, pp. 3861–3868.
  • معین نوایی و پژمان رضائی "فیلتر فراپهن باند با استفاده از روش امپدانس پله ای با بهبود افت خارج باند"، نشریهمدل سازی در مهندسی،  دوره 18، شماره 61، تابستان 1399، صفحه 19-13.
  • K. Patel, V. Sorathiya, Z. Sbeah, S. Lavadiya, T. K. Nguyen, and V. Dhasarathan, "Graphene-based tunable infrared multi band absorber", Optics Communications, Vol. 474, 2020, pp. 126109.
  • Yan, M. Meng, J. Li, and X. Li "Graphene-Assisted Narrow Bandwidth Dual-Band Tunable Terahertz Metamaterial Absorber", Frontiers in Physics, Vol. 8, 2020.
  • Zhong, "Design and measurement of a narrow band metamaterial absorber in terahertz range", Optical Materials, Vol. 100, 2020, pp. 109712.
  • Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, "Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing", Optics Express, Vol. 26, No. 7, 2018, pp. 9039–9049.
  • Aghaee and A.A. Orouji, "Reconfigurable multi-band, graphene-based THz absorber: circuit model approach", Results in Physics, Vol. 16, 2020, 102855.
  • S. Arezoomand, F. B. Zarrabi, S. Heydari, and N. P. Gandgi, "Independent polarization and multi-band THz absorber base on Jerusalem cross", Optics Communications, Vol. 352, 2015, pp. 121–126.
  • X. Wang, Y. He, P. Lou, W. Q. Huang, and F. Pi, "Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators", Results in Physics, Vol. 16, 2020, pp. 102930.