[1] Zhang, X., Zhao, L. (2015). “Thermoelectric materials : Energy conversion between heat and electricity”.
Journal of Materiomics, Vol. 1, No. 2. pp. 92–105.
[2] Chen, J., Song, W., Xu, D. (2017). “Optimal combustor dimensions for the catalytic combustion of methaneair
mixtures in micro-channels”. Energy Conversion and Management, Vol. 10, pp. 197-207.
[3] Federici, J.A., Norton, D.G., Brüggemann, T., Voit, K.W., Wetzel, E.D., Vlachos, D.G. (2006). “Catalytic
microcombustors with integrated thermoelectric elements for portable power production”. Journal of Power
Sources, Vol. 161, No. 2. pp. 1469–1478.
[4] Lee, K., Yun, J., Ahn, K., Lee, S., Kang, S., Yu, S. (2013). “Operational characteristics of a planar steam
reformer thermally coupled with a catalytic burner”. International Journal of Hydrogen Energy, Vol. 10, pp. 4767-
4775.
[5] Merotto, L., Dondè, R., De Iuliis, S. (2016). “Study of the performance of a catalytic premixed meso-scale
burner”. Experimental Thermal and Fluid Science, Vol. 6, pp. 115-121.
[6] Singh, T., Marsh, R., Min, G. (2016). “Development and investigation of a non-catalytic self-aspirating mesoscale
premixed burner integrated thermoelectric power generator”. Energy Conversion and Management,
Vol. 117, pp. 431-441.
[7] Chen, J., Yan, L., Song, W., Xu, D. (2017). “Effect of heat recirculation on the combustion stability of
methane-air mixtures in catalytic micro-combustors”. Applied Thermal Engineering, Vol. 12, pp. 702-714.
8[ ضیائی راد، م.، جعفری ندوشن، ا. ) 1390 (، بررسی عددی تأثیر هندسه دندانه های روی سطح بر جریان آشفته و انتقال حرارت در یک [
.37- کانال مستطیلی، مجله مدلسازی در مهندسی، دانشگاه سمنان، سال 9، شماره 27 ، ص 48
و تحلیل میدان جریان در شرایط کارکرد واقعی، مجله SGT 9[ علیگودرز، م. ) 1391 (، مدل سازی عددی محفظه احتراق توربین 600 [
.25- مدلسازی در مهندسی، دانشگاه سمنان، سال 10 ، شماره 31 ، ص 35
در CFD 10 [ یعقوبی، ن.، مغربی، ر. سید نژادیان، س. ) 1393 (، سینتیک و پدیده های انتقال در جفت شدن اکسایشی متان: مدلسازی [
.123- مقیاس دانهای، مجله مدلسازی در مهندسی، دانشگاه سمنان، سال 12 ، شماره 39 ، ص 141
[11] Deshmukh, S.R., Vlachos, D.G. (2007). “A reduced mechanism for methane and one-step rate expressions
for fuel-lean catalytic combustion of small alkanes on noble metals”. Combustion and Flame, Vol. 149, pp. 366-
383.
[12] Deutschmann, O., Maier, L., Riedel, U., Stroemann, A.H., Dibble, R. W. (2000). "Hydrogen Asssisted
Catalytic Combustion of Methane on Platinum". Catalysis Today, Vol. 59, pp. 141-150.
[13] Snyder, G.J., Toberer, E.S. (2008). “Complex thermoelectric materials”. Nature Materials, Vol. 7, pp. 105–
114.
[14] Moffat, R. J. (1997). “Notes on using thermocouples”. Electronics Cooling, Vol. 3, pp. 12-15.
[15] Merotto, L., Fanciulli, C., Donde, R., De Iuliis, S. (2016). “Study of a thermoelectric generator based on a
catalytic premixed meso-scale combustor”. Applied Energy, Vol. 162, pp. 346–353.
[16] Shin, W., Nakashima, T., Nishibori, M., Izu, N., Itoh, T., Matsubara, I. (2011). “Planar-type thermoelectric
micro devices using ceramic catalytic combustor”. Current Applied Physics, Vol. 11, No. 4.
[17] Demir, M.E., Dincer, I. (2017). “Development and heat transfer analysis of a new heat recovery system with
thermoelectric generator”. International Journal of Heat and Mass Transfer, Vol. 108, pp. 2002-2010.
[18] Fanaee, S. A., Esfahani, J. A. (2014). The analytical modeling of propane-oxygen mixture at catalytic microchannel.
Heat and Mass Transfer, Vol. 50, no. 10, pp. 1365-1373.
[19] Fanaee, A., & Esfahani, J. A. (2012). The normalized analysis of a surface heterogeneous reaction of a
propane/air mixture into a micro-channel. Chinese Physics Letters, Vol. 29, No. 12, 124702.
[20] Fanaee, S. A., Abbaszadeh, M. (2021). The thermal–fluid investigation of effects of different wall boundary
conditions on platinum catalytic micro-channel combined with a thermoelectric system. Alexandria Engineering
Journal, Vol. 60, No. 6, pp. 5675-5685.