بررسی تأثیرات شرط مرزی های مختلف دیواره بر واکنش پایدار شده کاتالیزی متان/هوا روی سطح پلاتینیوم جهت تولید توان یکنواخت ترموالکتریکی

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشکده مهندسی مکانیک-تبدیل انرژی دانشگاه بیرجند

2 دانشیار، دانشکده مهندسیمکانیک-تبدیل انرژی دانشگاه بیرجند

چکیده

در این کار تأثیر واکنش پایدارشده سطحی کاتالیزی و شرایط مرزی مختلف دیواره برای جریان غیر احتراقی مخلوط متان-هوا درون ریز با ترموالکتریک بررسی شده است. برای حل این مسئله از مدل عددی در حالت پایا و دو بعدی با فرض جریان تراکم ناپذیر با ضریب هدایت حرارتی و ویسکوزیته ثابت برای مخلوط متان-هوا استفاده شده است. برای اعتبار سنجی این مدل، تغییرات دمای بدون بعد بر حسب طول بدون بعد ریزمحفظه با داده‌های مقایسه شده که تطابق قابل قبول با حداکثر خطای 45/8 درصد را نشان می‌دهد. افزایش ضریب انتقال حرارت جابه جایی از مقدار 2 تا 10 وات بر متر کلوین سبب کاهش مصرف جرمی متان شده اما با افزایش این ضریب تا مقدار 20 وات بر متر کلوین کاهش می‌یابد. در حالت دیواره با ضریب انتقال حرارت 10 با دو برابر کردن سرعت از 4/0 به 8/0 متر بر ثانیه میزان ولتاژ خروجی ترموالکتریک 37% افزایش می‌یابد. با توجه به این که با افزایش سرعت جریان ورودی مخلوط متان-هوا، راندمان در پایه های ترموالکتریک کاهش پیدا می‌کند توان ترموالکتریکی نیز کاهش یافته که تغییرات توان خروجی ترموالکتریک از بیشترین تا کمترین سرعت ورودی برابر با 70% می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effects of different wall boundary condition on methane / air catalytic stabilized reaction on platinum surface to produce uniform thermoelectric power.

نویسندگان [English]

  • Mohammad Abbaszadeh Darbani 1
  • sayyed aboozar fanaee 2
1 Department of Mechanical Engineering University of Birjand
2 . Associate professor, Department of Mechanical Engineering, University of Birjand
چکیده [English]

In this work, the effect of catalytic surface reaction and different wall boundary conditions for the non-combustion flow of endocrine-methane air mixture with thermoelectric is investigated. To solve this problem, a stable and two-dimensional numerical model with the assumption of incompressible flow with thermal conductivity and constant viscosity for methane-air mixture has been used. To validate this model, the dimensionless temperature changes in terms of dimensionless dimension of the microcontroller are compared with the data that show an acceptable agreement with a maximum error of 8.45%. Increasing the transfer heat transfer coefficient from 2 to 10 watts per Kelvin reduces the mass consumption of methane, but by increasing this coefficient to 20 watts per Kelvin decreases. To validate this model, the dimensionless temperature changes in terms of dimensionless dimension of the microcontroller are compared with the data that show an acceptable agreement with a maximum error of 8.45%. Increasing the transfer heat transfer coefficient from 2 to 10 watts per Kelvin reduces the mass consumption of methane, but by increasing this coefficient to 20 watts per Kelvin decreases. In the wall mode, with a heat transfer coefficient of 10, the thermoelectric output voltage increases by 37% by doubling the velocity from 0.4 to 0.8 m / s. Due to the fact that with increasing the inlet velocity of the methane-air mixture, the efficiency in thermoelectric bases decreases, the thermoelectric power also decreases that the thermoelectric output power changes from the maximum to the minimum inlet velocity equal to 70%.

کلیدواژه‌ها [English]

  • Catalytic surface reaction
  • Numerical solution
  • Methane-air mixture
  • Exhaust voltage
  • Thermoelectric power
[1] Zhang, X., Zhao, L. (2015). “Thermoelectric materials : Energy conversion between heat and electricity”.
Journal of Materiomics, Vol. 1, No. 2. pp. 92–105.
[2] Chen, J., Song, W., Xu, D. (2017). “Optimal combustor dimensions for the catalytic combustion of methaneair
mixtures in micro-channels”. Energy Conversion and Management, Vol. 10, pp. 197-207.
[3] Federici, J.A., Norton, D.G., Brüggemann, T., Voit, K.W., Wetzel, E.D., Vlachos, D.G. (2006). “Catalytic
microcombustors with integrated thermoelectric elements for portable power production”. Journal of Power
Sources, Vol. 161, No. 2. pp. 1469–1478.
[4] Lee, K., Yun, J., Ahn, K., Lee, S., Kang, S., Yu, S. (2013). “Operational characteristics of a planar steam
reformer thermally coupled with a catalytic burner”. International Journal of Hydrogen Energy, Vol. 10, pp. 4767-
4775.
[5] Merotto, L., Dondè, R., De Iuliis, S. (2016). “Study of the performance of a catalytic premixed meso-scale
burner”. Experimental Thermal and Fluid Science, Vol. 6, pp. 115-121.
[6] Singh, T., Marsh, R., Min, G. (2016). “Development and investigation of a non-catalytic self-aspirating mesoscale
premixed burner integrated thermoelectric power generator”. Energy Conversion and Management,
Vol. 117, pp. 431-441.
[7] Chen, J., Yan, L., Song, W., Xu, D. (2017). “Effect of heat recirculation on the combustion stability of
methane-air mixtures in catalytic micro-combustors”. Applied Thermal Engineering, Vol. 12, pp. 702-714.
8[ ضیائی راد، م.، جعفری ندوشن، ا. ) 1390 (، بررسی عددی تأثیر هندسه دندانه های روی سطح بر جریان آشفته و انتقال حرارت در یک [
.37- کانال مستطیلی، مجله مدلسازی در مهندسی، دانشگاه سمنان، سال 9، شماره 27 ، ص 48
و تحلیل میدان جریان در شرایط کارکرد واقعی، مجله SGT 9[ علیگودرز، م. ) 1391 (، مدل سازی عددی محفظه احتراق توربین 600 [
.25- مدلسازی در مهندسی، دانشگاه سمنان، سال 10 ، شماره 31 ، ص 35
در CFD 10 [ یعقوبی، ن.، مغربی، ر. سید نژادیان، س. ) 1393 (، سینتیک و پدیده های انتقال در جفت شدن اکسایشی متان: مدلسازی [
.123- مقیاس دانهای، مجله مدلسازی در مهندسی، دانشگاه سمنان، سال 12 ، شماره 39 ، ص 141
[11] Deshmukh, S.R., Vlachos, D.G. (2007). “A reduced mechanism for methane and one-step rate expressions
for fuel-lean catalytic combustion of small alkanes on noble metals”. Combustion and Flame, Vol. 149, pp. 366-
383.
[12] Deutschmann, O., Maier, L., Riedel, U., Stroemann, A.H., Dibble, R. W. (2000). "Hydrogen Asssisted
Catalytic Combustion of Methane on Platinum". Catalysis Today, Vol. 59, pp. 141-150.
[13] Snyder, G.J., Toberer, E.S. (2008). “Complex thermoelectric materials”. Nature Materials, Vol. 7, pp. 105–
114.
[14] Moffat, R. J. (1997). “Notes on using thermocouples”. Electronics Cooling, Vol. 3, pp. 12-15.
[15] Merotto, L., Fanciulli, C., Donde, R., De Iuliis, S. (2016). “Study of a thermoelectric generator based on a
catalytic premixed meso-scale combustor”. Applied Energy, Vol. 162, pp. 346–353.
[16] Shin, W., Nakashima, T., Nishibori, M., Izu, N., Itoh, T., Matsubara, I. (2011). “Planar-type thermoelectric
micro devices using ceramic catalytic combustor”. Current Applied Physics, Vol. 11, No. 4.
[17] Demir, M.E., Dincer, I. (2017). “Development and heat transfer analysis of a new heat recovery system with
thermoelectric generator”. International Journal of Heat and Mass Transfer, Vol. 108, pp. 2002-2010.
[18] Fanaee, S. A., Esfahani, J. A. (2014). The analytical modeling of propane-oxygen mixture at catalytic microchannel.
Heat and Mass Transfer, Vol. 50, no. 10, pp. 1365-1373.
[19] Fanaee, A., & Esfahani, J. A. (2012). The normalized analysis of a surface heterogeneous reaction of a
propane/air mixture into a micro-channel. Chinese Physics Letters, Vol. 29, No. 12, 124702.
[20] Fanaee, S. A., Abbaszadeh, M. (2021). The thermal–fluid investigation of effects of different wall boundary
conditions on platinum catalytic micro-channel combined with a thermoelectric system. Alexandria Engineering
Journal, Vol. 60, No. 6, pp. 5675-5685.