بررسی عملکرد شاسی اصلی و مجموعه انتقال قدرت توربین بادی دومگاواتی تحت بارهای آیرودینامیکی

نوع مقاله : مقاله مکانیک

نویسندگان

1 پژوهشگاه نیرو- گروه انرژی های تجدیدپذیر

2 پژوهشگاه نیرو

چکیده

شاسی اصلی یکی از اصلی‌ترین اجزای بارگیر توربین بادی مگاواتی می‌باشد. با توجه به نقش شاسی، علاوه بر تحلیل‌های استحکامی و خستگی، تحلیل تغییر شکل ایجادشده در شاسی نیز از اهمیت بسزایی برخوردار است. اما برخلاف تحلیل‌های استحکامی و خستگی، معیار مشخصی برای تحلیل تغییر شکل شاسی اصلی وجود ندارد. از اینرو در این مقاله، علاوه بر ارائه روشی برای استخراج معیارهای مشخص برای ارزیابی تغییر شکل مجاز شاسی و درایوترین، با کمک شبیه‌سازی همزمان شاسی و درایوترین راه حلی برای تعیین جابجایی‌ها و ارزیابی آن‌ها تحت بارهای وارده ارائه شده است. همجنین عملکرد شاسی اصلی از جنبه استحکامی نیز بررسی شده است. با توجه به عددی بودن راه پیشنهادی، پیش از بررسی نتایج، در کنار بررسی همگرایی نتایج کیفیت المان‌ها نیز از جنبه‌های مختلف بررسی شده تا از صحت نتایج اطمینان حاصل گردد. در نهایت بررسی‌ها نشان داد که هندسه طراحی شده به عنوان شاسی اصلی، علاوه بر برخورداری از استحکام لازم، از صلبیت کافی نیز در برابر بارهای وارده به توربین بادی برخوردار می‌باشد و درایوترین نصب شده بر آن، بدون هیچ مشکلی می‌تواند به عملکرد خود بپردازد. به‌نحوی که ضریب اطمینان طراحی شاسی، در تحلیل‌های استحکامی 1.3، ضریب اطمینان یاتاقان سیستم یاو در برابر تغییر شکل 1.7، ضریب اطمینان کوپلینگ سرعت بالا نیز از دیدگاه تغییر شکل، در هر دو جهت محوری و شعاعی برابر 1.1 می‌باشد. همچنین تحلیل‌های تغییر شکل مجموعه درایوترن و شاسی نشان دهنده کاهش عمر 15% یاتاقان اول و کاهش عمر 50% یاتاقان دوم نصب شده بر محور اصلی توربین را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of main frame performance of 2 MW wind turbine using finite element method

نویسندگان [English]

  • A. Ghaznavi 1
  • abas Bahri 2
1 Niroo Research Institute (NRI) Renewable Energy Research Department
2 Niroo Research Institute (NRI)
چکیده [English]

Due to the role of the frame, in addition to strength and fatigue analysis, the deformation of the frame is also very important. But unlike strength and fatigue analyzes, there is no specific criterion for analyzing the deformation of the main frame. Therefore, in this paper, in addition to providing a method for deriving specific criteria for evaluating the permissible deformation of the frame and the drivetrain, with the help of simultaneous simulation of the frame and the drivetrain, a solution for determining the displacements and evaluating them under loads is presented. The performance of the main frame has also been examined in terms of strength. Due to the numerical nature of the proposed way, before obtaining the results, the quality of the elements is studied from various aspects to ensure the accuracy of the results. Finally, studies have shown that the presented geometry has the necessary strength, and also has sufficient rigidity against the applied loads on the wind turbine So the drivetrain installed on it without any problems can perform its function. Finally, the main frame strength safety factor is 1.3, the deformation safety factor of yaw bearing is 1.7, and the deformation safety factor of high-speed coupling is 1.1 in both axial and radial directions. Also, the deformation analysis of the drivetrain and frame assembly shows a 15% reduction in the life of the first bearing and a 50% reduction in the life of the second bearing installed on the main shaft of the wind turbine

کلیدواژه‌ها [English]

  • Wind Turbine
  • Main Frame
  • FE method
  • Drivetrain
  • Deformation analysis
[1] D. Raffat, "Renewable Energy (Alternative to fossil fuel energy)." PhD diss., Ministry of Higher Education, 2021.
[2] C. Harvey, and N. Heikkinen, "Congress Says Biomass Is Carbon-Neutral, but Scientists Disagree." Scientific American E&E News Environment, USA, 2018.
[3] N. Kilinc-Ata, "The evaluation of renewable energy policies across EU countries and US states: An econometric approach." Energy for Sustainable Development, Vol. 31, April 2016, pp. 83-90.
[4] Click Energy. 12 Countries Leading the Way in Renewable Energy. Retrieved from: https://www.clickenergy.com.au/news-blog/12-countries-leading-the-way-in-renewable-energy/. Accessed on 26 June 2020.
[5] K. Q. Nguyen, "Wind energy in Vietnam: Resource assessment, development status and future implications ", Renewable energy, Vol. 35, No. 2, February 2007, pp. 1405-1413.
[6] H. Harajli, V. Kabakian, J. El-Baba, A. Diab, and C. Nassab, "Commercial-scale hybrid solar photovoltaic-diesel systems in select Arab countries with weak grids: an integrated appraisal." Energy Policy. Vol. 137, February 2020, pp. 111190.
[7] J. K. Kaldellis, and D. Zafirakis. "The wind energy (r) evolution: A short review of a long history." Renewable energy, Vol. 36, NO. 7,  July 2011, pp. 1887-1901.
[8] S. A. Moussavi, and A. Ghaznavi, "Effect of boundary layer suction on performance of a 2MW wind turbine." Energy, October 2021, pp. 121072.
[9] معتکف حاتمی و بهنام ایمانی، "کنترل توربین بادی محور افقی دارای ژنراتور سنکرون به منظور جذب بیشینه انرژی باد." نشریه مدل سازی در مهندسی، دوره 16، شماره54، پاییز 1397، صفحه 403-413.
[10] مهدی بقائی، حسین شاهوردی، و سید محمود هاشمی نژاد، "مدل سازی آیروهیدروالاستیک توربین بادی با سکوی پایه کششی"، نشریه مدل سازی در مهندسی، دوره 10، شماره 30، پاییز 1391، صفحه 1-17.
[11] خانی زکی, حاجی صمدی و محمد ابراهیم آبادی، "ارائه مدلی تحلیلی جهت تعیین اثرات پارامترهای توربین بادی و مشخصه احتمالی سرعت باد بر میانگین قیمت گرهی بازار برق"، نشریه مدل سازی در مهندسی، دوره 18، شماره 62، پاییز 1399، صفحه 31-42.
[12] آیدین غزنوی اسگویی و ابوالفضل موسوی ترشیزی، "طراحی شاسی اصلی توربین بادی 2 مگاواتی با رویکرد ساخت به روش جوشکاری"، انتشارات پژوهشگاه نیرو، ایران، 1399.
[13] آیدین غزنوی اسگوئی و مسعود عسگری و حمیدرضا لاری، "بررسی تحلیل خستگی چند محوری شاسی اصلی توربین بادی مگاواتی به روش های مختلف"، بیستمین کنفرانس سالانه مهندسی مکانیک، شیراز، ایران، 1399.
[14] آیدین غزنوی اسگوئی و عباس بحری، "تخمین ضریب اطمینان عمر شاسی اصلی توربین بادی دو مگاواتی نصب شده در کلاس دو در چرخه بیست ساله با استفاده از روش دنگ ون"، هفتمین کنفرانس انرژی بادی، تهران، ایران، 1400.
[15] D. Zwick, and M. Muskulus, "Simplified fatigue load assessment in offshore wind", Wind Energy, Vol. 9, NO. 2, February 2016, pp. 265-278.
[16] D. Zwick, and M. Muskulus, "The simulation error caused by input loading variability in offshore wind turbine structural analysis", Wind Energy, Vol. 18, NO. 8, August 2015, pp.1421-1432.
[17] F. Vorpahl, H. Schwarze, T. Fischer, M. Seidel, and J. Jonkman, "Offshore wind turbine environment, loads, simulation, and design", Wiley Interdisciplinary Reviews: Energy and Environment", Vol. 2, NO. 5, October 2013, pp.548-570.
[18] D. Zwick, , M. Muskulus, and G. Moe, "Iterative optimization approach for the design of full-height lattice towers for offshore wind turbines", Energy Procedia, Vol. 24, pp.297-304.
[19] S. Schafhirt, D. Zwick, and M. Muskulus, "Two-stage local optimization of lattice type support structures for offshore wind turbines", Ocean Engineering, Vol. 117, NO.1, May 2016, pp.163-173.
[20] Z. Jiang, W. Hu, W. Dong, Z. Gao, and Z. Ren, "Structural reliability analysis of wind turbines: A review", Energies, Vol. 10, NO.12, December 2017, pp. 2099.
[21] DNV, GL. "DNV GL-ST-0437: Loads and Site Conditions for Wind Turbines." DNV GL: Oslo, Norway, 2016.
[22] S. Chapaloglou, D. Varagnolo, F. Marra, and E. Tedeschi. "Data dependent concurrent storage sizing and control design for frequency support in isolated power systems", European Control Conference (ECC), IEEE, June 2021, pp. 2092-2097.
[23] K. J. Bathe, "Finite element procedures". Klaus-Jurgen Bathe, USA, 2006.
[24] S.S. Rao, "The Finite Element Method in Engineering: Pergamon International Library of Science, Technology, Engineering and Social Studies", Elsevier, USA, 2013.
[25] J. Robinson, "Basic and shape sensitivity tests for membrane and plate bending finite elements", NAFEMS, 1985.
[26] O. C. Zienkiewicz, Y. C. Liu, and G. C. Huang. "Error Estimates and Convergence Rates for Various Incompressible Elements", International Journal for Numerical Methods in Engineering, Vol. 28, NO. 9, September 1989, pp. 2191-2202. 
[27] J. Brandts, A. Hannukainen, S. Korotov, and M. Křîžek, "On angle conditions in the finite element nethod" SeMA Journal, Vol. 56, No. 1, September 2011, pp. 81-95.
[28] K. Gautam, and S. Shrivastava, "Skew Bridge Analysis using ANSYS", International Journal of Engineering Research & Technology (IJERT), Vol. 9, NO.6, June 2020, pp. 870-875.
[29] Catalogue Slewing Bearing, Manual for Installation and Maintenance, defontaine, France, 2022.
[30] Catalogue  Bearing data sheet, rollix, France, 2022.
[31] Spherical roller bearings, Technical Information, SKF, Publ.No. TI 0401/III, Reg 471 22; 842 2; 845 51, Jun. 2006.
[32] E. Madenci, and I. Guven. "The finite element method and applications in engineering using ANSYS", Springer, USA, 2015.
[33] Drive Technology catalogue, made of motion "KTR", Germany, 2022